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Abstract

We give a complete classification of conjugacy stable parabolic subgroups of Artin-Tits
groups of spherical type. This answers a question posed by Ivan Marin and generalizes a
theorem obtained by Juan González-Meneses in the specific case of Artin braid groups.

1 Introduction

Let S be a finite set. A Coxeter matrix over S is a symmetric square matrix M = (ms,t)s,t∈S
indexed by the elements of S, such that ms,s = 1, and ms,t ∈ {2, 3, 4, . . . ,∞} for all s, t ∈ S,
s 6= t. Such a Coxeter matrix is usually represented by its Coxeter graph, denoted by Γ = ΓS =
Γ(M). This is a labelled graph whose set of vertices is S, in which two distinct vertices s and t
are connected by an edge if ms,t > 3; if in addition ms,t > 4, the corresponding edge wears the
label ms,t.

The Artin-Tits system of Γ is the pair (A,S), where A = AΓ is the group

AΓ =
〈
S
∣∣ Π(s, t;ms,t) = Π(t, s;ms, t) for all s, t ∈ S, s 6= t, ms,t 6=∞

〉
,

where, for m > 2,

Π(a, b;m) =

{
(ab)k if m = 2k,

(ab)ka if m = 2k + 1.

The group AΓ is called the Artin-Tits group of Γ; sometimes we shall also use the notation AS
to refer to this group. If we add to the presentation of AΓ the relations s2 = 1, for every s ∈ S,
we obtain the Coxeter group associated to AΓ. When this group is finite we say that AΓ has
spherical type. By extension, we say that Γ is of spherical type if AΓ has spherical type. AΓ is
called irreducible if the graph Γ is connected and reducible otherwise. Notice that if Γ1, · · · ,Γr
are the connected components of Γ, then AΓ = AΓ1×· · ·×AΓr . We recall Coxeter’s classification
(Coxeter, 1935) of connected Coxeter graphs of spherical type (hence of irreducible Artin-Tits
groups of spherical type) in Figure 1. The name of the graph will be used to refer to the
corresponding Artin-Tits group; for instance the Artin-Tits group of type E7 is the Artin-Tits
group of the graph E7.

Let X be a subset of S. The standard parabolic subgroup associated to X is the subgroup of AΓ

generated by X and denoted by AX . Consider the subgraph ΓX of Γ = ΓS generated by X (the
set of vertices is X and the edges are exactly the edges of ΓS which connect two vertices in X).
It is known (Van der Lek, 1983) that (AX , X) is the Artin-Tits system of ΓX . A parabolic
subgroup is a subgroup P conjugate to some standard parabolic subgroup AX . Note that P
and AX are isomorphic; if AX is irreducible of spherical type, the type of P is the name of the
graph ΓX in Figure 1.
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Figure 1: Connected Coxeter graphs of spherical type with a specific enumeration of the vertices.

The flagship example of an Artin-Tits group of spherical type is the braid group on n strands Bn
(n > 2) (Artin, 1947). It is associated to the Coxeter graph An−1 depicted in Figure 1; the
corresponding Coxeter group is the symmetric group Sn. We recall that each generator si is
the crossing of the strands in the positions i and i + 1. Let m and n be two positive integers
such that 2 6 m 6 n. Considering only the m − 1 first vertices of the graph An−1 furnishes
a fundamental example of a standard (irreducible) parabolic subgroup: the braid group Bm
embedded in Bn by adding n−m straight strands to any m-strand braid.

It was shown in (González-Meneses, 2014) that the above embedding Bm ↪→ Bn (for 2 6 m < n)
does not merge conjugacy classes, i.e. if two m-strand braids are conjugate in the n-strand braid
group, they must already be conjugate as m-strand braids.

Motivated by the latter result, Ivan Marin asked some years ago whether standard parabolic
subgroups of irreducible Artin-Tits groups of spherical type are conjugacy stable. A (non-
trivial) proper subgroup H of a group G is said to be conjugacy stable if any two elements
of H which are conjugated in G must be conjugated through an element of H; this is equivalent
to saying that the conjugacy classes of H do not merge in G. It is an easy exercise to check
that conjugacy stability is preserved under subgroup conjugation; therefore Marin’s question
actually covers all parabolic subgroups of irreducible Artin-Tits groups of spherical type.

Suppose now that AS is a reducible Artin-Tits group of spherical type, expressed as the direct
product AS = AS1 × . . .× ASr , where r > 1 and each ASi is non-trivial and irreducible. For a
subset X ( S, we can consider Xi = X∩Si (i = 1, . . . , r) and decompose AX as a direct product
of parabolic subgroups AX = AX1 × . . . × AXr –notice that AXi might be trivial (when Xi is
empty) or reducible. Since elements in distinct components of AS commute pairwise, AX is
conjugacy stable in AS if and only if AXi is conjugacy stable in ASi for all i.

In view of the above remarks, the following, which is our main result, allows to decide the
conjugacy stability of any given parabolic subgroup of any Artin-Tits group of spherical type:

Theorem 1. Let AΓ = AS be an irreducible Artin-Tits group of spherical type and let ∅ 6= X ( S.

(1) If AX is irreducible, AX is conjugacy stable in AS except in the following cases:

(a) AS is of type E6, E7 or E8 and AX is of type D,

(b) AS is of type E8 and AX is of type E7,

(c) AS is of type D and AX is of type D2k,

(d) AS is of type H4 and AX is of type H3.

(2) If AX is reducible, AX is not conjugacy stable in AS except in the following cases:
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(a) AS is of type Bn (n > 3) and AX = A{s1} × AZ , with Z ⊂ {s3, . . . , sn} and AZ
irreducible.

(b) AS is of type F4.

González-Meneses’ proof in the specific case of braids relies heavily on the identification be-
tween braids and mapping classes of punctured disks: Birman-Lubotzky-McCarthy’s Canonical
Reduction Systems of mapping classes play a fundamental role. Although more combinatorial
in spirit, our approach was inspired by González-Meneses’: instead of the Canonical Reduc-
tion System, we use the parabolic closure of elements of Artin-Tits groups of spherical type
introduced recently in (Cumplido et al. , 2019); see Theorem 7.

The first main tool we will use are ribbons. These objects are highly useful when conjugating
parabolic subgroups and we introduce them in Section 2. The other main result consists in
making depend conjugacy stability of standard parabolic subgroups on a special property that
we will call Property ?. This property and its implications will be explained in Section 3.
Finally, in Section 4 we finish the proof of Theorem 1.

2 Garside elements and ribbons

Given a group G and g, x ∈ G, we denote by xg = g−1xg the conjugate of x by g; this defines a
right-action of G on itself. In the same way, for g ∈ G and a subset H of G, we denote by Hg

the set of g-conjugates of elements of H.

For the remainder of the present section, we fix an irreducible Artin-Tits group of spherical
type AS . The monoid A+

S consisting of positive elements (which can be written as words on S
with only positive exponents) is a Garside monoid (see Brieskorn & Saito (1972), Dehornoy &
Paris (1999)): this involves, among other things, a fundamental or Garside element which we
denote by ∆S (for X ⊂ S, the Garside element of AX will be denoted by ∆X).

Example. In the braid group on n + 1 strands (Artin-Tits group of type An), the Garside
element is s1(s2s1)(s3s2s1) · · · (snsn−1 · · · s1); it can be seen as a half-twist of the trivial braid
on n+ 1 strands.

Although the paper builds on previous works which use in a crucial way the Garside structure
of AS , our arguments do not directly involve this structure so we only record some useful
properties of the Garside element ∆S .

It is known that conjugation by ∆S is an involution and that S∆S = S. Moreover, ∆S is
central if AS is of type A1, Bn, Dn (n even), E7, E8, F4, H3, H4 or I2m (m even) (Brieskorn
& Saito, 1972, Deligne, 1972). Table 1 synthesizes the conjugacy action by ∆S in the other
irreducible cases. In each of the cases considered in Table 1, we call flip automorphism the
inner automorphism s 7→ s∆S of AS . For more information about the specific construction
of ∆S , see (Brieskorn & Saito, 1972).

We are now able to define ribbons. Note that the following definition is slightly different from
the original definition of ribbon from (Godelle, 2003) based upon (Paris, 1997).

Definition 2. (Cumplido et al. , 2019, Definition 4.1) Let AS be an Artin–Tits group of
spherical type. Given X ⊆ S and t ∈ S, we define the positive element

r(t,X) = ∆−1
X ∆X∪{t}

and we call it a ribbon. If moreover t is adjacent to X in the Coxeter graph ΓS , we say that
r(t,X) is an adjacent ribbon.
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AS An (n > 2) Dn (n odd) E6 I2m (m odd)

s∆S
i sn−i+1, 1 6 i 6 n


s2 i = 1

s1 i = 2

si 3 6 i 6 n



s6 i = 1

s2 i = 2

s5 i = 3

s4 i = 4

s3 i = 5

s1 i = 6

s(i+1) mod 2

Table 1: Conjugation by the special Garside element ∆S .

Remark 3. Notice that r(t,X) conjugates X to some subset X ′ of X ∪ {t} and X ′ = X∆X∪{t} .

The forthcoming proofs use a weak version of a result from (Antoĺın & Cumplido, 2019) and
(Cumplido et al. , 2019). The support of a positive element g of AS is defined as

Supp(g) = {s ∈ S, s appears in any positive word on S representing g}.

Lemma 4 (Cumplido et al. , 2019, Corollary 6.5; Antoĺın & Cumplido, 2019, Lemma 21).
Let g, h be positive elements of an Artin–Tits group AS of spherical type such that Supp(g) =
Y ( S and Supp(h) = Z ( S. If g and h are conjugate in AS, then Y and Z are also
conjugate. Moreover, there are subsets Y = Y0, . . . , Yn = Z of S and adjacent ribbons r(ti, Yi−1)
(i = 1, . . . , n) conjugating Yi−1 to Yi.

3 The Property ?

In this section we introduce our Property ? and we show its sufficiency for conjugacy stability,
in the spherical case. In a second step, we show that Property ? holds in several cases.

Definition 5. Let (AS , S) be an Artin-Tits system (of spherical type) and let ∅ 6= X ( S We
say that (AX , AS) satisfies Property ? if for all Y1, Y2 ⊂ X, and g ∈ AS such that Y1

g = Y2,
there exists h ∈ AX such that sh = sg for all s ∈ Y1.

Proposition 6. Let (AS , S) be an Artin-Tits system of spherical type and let ∅ 6= X ( S. If
(AX , AS) has Property ?, then AX is conjugacy stable in AS.

Before proceeding to the proof, we recall the important and recently defined notion of parabolic
closure of elements of Artin-Tits groups of spherical type:

Theorem 7 (Cumplido et al. , 2019, Section 7, Lemma 8.1). Let (AS , S) be an Artin-Tits
system of spherical type. For each a ∈ AS, there is a unique minimal (with respect to inclusion)
parabolic subgroup Pa of AS which contains a; we call this subgroup the parabolic closure of a.
Furthermore, for g ∈ AS, we have Pa

g = Pag .

Proof of Proposition 6. Let a, b ∈ AX and c ∈ AS satisfying ac = b. According to Theorem 7,
we have that Pa

c = Pac = Pb. According to (Cumplido, 2019, Theorem 3), both subgroups Pa
and Pb of AX can be standardized inside AX : i.e. there exist α, β ∈ AX and subsets Ya, Yb of X

such that Pa
α = AYa and Pb

β = AYb . Notice that Aα
−1cβ
Ya

= AYb .

By (Godelle, 2003, Proposition 2.1.(3)) we can find u ∈ AS with Ya
u = Yb and v ∈ AYb , such that

α−1cβ = uv. By Property ?, we can find u′ ∈ AX such that su
′

= su for every s ∈ Ya. It follows
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that su
′v = suv = sα

−1cβ for all s ∈ Ya; therefore for any element z ∈ AYa , we have zu
′v = zα

−1cβ.
Applying this to the particular element aα ∈ AYa , we obtain aαu

′v = aαα
−1cβ = acβ = bβ. It

follows that b = aαu
′vβ−1

, and we note that αu′vβ−1 ∈ AX . �

Remark 8. Given an Artin-Tits system (AS , S) of spherical type, Property ? for the pair
(AX , AS) implies that the automorphisms of AX induced by conjugation by an element in
the normalizer NAS

(AX) are inner automorphisms of AX . Indeed, we know (Godelle, 2003,
Theorem 0.1) that NAS

(AX) = AX · QZAS
(AX) (where QZAS

(AX) = {g ∈ AS , X
g = X});

Property ? then says that for g ∈ QZAS
(AX), we can find h ∈ AX such that xg = xh for all

x ∈ AX and the claim follows.

Now, we will see that Property ? holds in some cases.

Lemma 9. Let AX be an Artin–Tits group of type An, E6 or I2·m, m odd, and let ΓX be its
defining Coxeter graph. Let Y1, Y2 ⊂ X, let ΓY1, ΓY2 be the respective induced subgraphs of ΓX
and let ψ : ΓY1 −→ ΓY2 be an isomorphism of labeled graphs. Then there exists v ∈ AX such
that ψ(y) = yv, for all y ∈ Y1.

Proof. Suppose first that AX is of type I2·m. Write s̄i = s(i+1) mod 2, for i = 1, 2. Then ψ(y) = y
for all y ∈ Y1, or ψ(y) = ȳ for all y ∈ Y1. It then suffices to take v to be the identity or ∆X ,
accordingly.

Suppose that AX is of type An. The graph ΓY1 is a disjoint union of path graphs (possibly with
a single vertex) and the graph isomorphism ψ: ΓY1 −→ ΓY2 can be realized conjugating first
by a product of ribbons (as in the example of Figure 2) and then by a product of the Garside
elements of some irreducible components of AY2 .

Figure 2: In the braid group B12, a braid made of ribbons conjugating Y1 = {s1, s2} ∪ {s6} ∪
{s9, s10, s11} to Y2 = {s2, s3, s4} ∪ {s8} ∪ {s10, s11}.

Now suppose that AX is of type E6. It can be checked that in this case, two standard parabolic
subgroups ΓY1 and ΓY2 are isomorphic if and only if Y1 and Y2 are conjugate; therefore under
our hypothesis Y1 and Y2 must be conjugate in AX .

If Y1 or Y2 is a subset of {s1, s3, s4, s5, s6}, we are back to the previous case, as A{s1,s3,s4,s5,s6}
is a braid group on 6 strands. In Table 2, we list the conjugacy classes of subsets of X with
no representative in {s1, s3, s4, s5, s6}. In each case, we see that every possible graph automor-
phism of ΓY1 (the table considers generators of the automorphism group of ΓY1) is induced by
conjugation by some v ∈ AX , given explicitly in the last column.
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Table 2: The conjugacy classes of subsets of X with no representative lying in {s1, s3, s4, s5, s6}.

Y1 Type of Y1 Automorphism of ΓY1 v

{s1, s2, s4, s6} A1 ×A1 ×A2
flip on A2-component

transposition of the A1-components
∆{s2,s4}

∆X

{s1, s2, s3, s5, s6} A1 ×A2 ×A2

flip on the first A2-component
flip on the second A2-component

transposition of the A2-components

∆{s1,s3}
∆{s5,s6}

∆X

{s2, s3, s4, s5} D4
transposition of the leaves s3, s5 of ΓY1
transposition of the leaves s2, s5 of ΓY1

∆X

∆{s1,s2,s3,s4,s5}
{s1, s2, s4, s5, s6} A1 ×A4 flip on the A4-component ∆{s2,s4,s5,s6}

X E6 flip of the whole ΓX ∆X

Remark 10. Although this will not be used in the sequel, we note that the statement of Lemma 9
holds as well for AX of type E8.

It also is easily seen that the statement of Lemma 9 is not true if AX is of type B or D. If AX is of
type B, it suffices to consider Y1 = Y2 = {s1, s2} and the automorphism ψ of ΓY1 which permutes
its two vertices; it can be checked that s1 and s2 are not conjugate in AX (see Lemma 13), so ψ
fails to be induced by an inner automorphism of AX . If AX has type D, choosing Y1 = {s1, s2}
and Y2 = {s1, s4}, we’ve just seen in the above proof that the graph isomorphism ΓY1 −→ ΓY2
given by s1 7→ s1 and s2 7→ s4 is not induced by any inner automorphism of AX .

Proposition 11. Let AS be any Artin–Tits group, let ∅ 6= X ( S such that AX is of type An,
E6 or I2·m, m odd. Then (AX , AS) has Property ?.

Proof. Let Y1, Y2 ⊂ X and w ∈ AS such that Y w
1 = Y2; in particular, conjugation by w induces

an isomorphism between the labeled graphs ΓY1 and ΓY2 and it follows from Lemma 9 that we
can find v ∈ AX so that yv = yw, for all y ∈ Y1.

Proposition 12. Let AS be an irreducible Artin–Tits group of spherical type and let ΓS be its
defining Coxeter graph. Let ∅ 6= X ( S. Assume that:

• AX is of type Bn, or

• AX is of type Dn (n odd) and AS is of type Dm (m > n).

Then (AX , AS) satisfies Property ?.

Proof. Whenever Z ⊂ S, we write ΓZ for the subgraph of ΓS induced by Z. We fix once and
for all Y1, Y2 ⊂ X and w ∈ AS such that Y w

1 = Y2. Suppose first that AX is of type Bn; observe
that AS must be of type F4 or Bm (m > n) and that the first possibility might occur only if
n 6 3. We give a detailed proof assuming that AS is of type Bm; the case AS of type F4 can
be dealt with in a similar fashion and is left as an exercise for the reader.

Given any subset Z ⊂ S, we denote by Z ′ the set of vertices of the connected component
of ΓZ containing s1 and we set Z ′ = ∅ if s1 /∈ Z; we also denote Z ′′ = Z \ Z ′. Notice that
the conjugation by w induces an isomorphism between the Coxeter graphs ΓY1 and ΓY2 . Then
Y ′1 = Y ′2 with yw = y for all y ∈ Y ′1 (due to the defining relations of AS) and the graphs ΓY ′′1
and ΓY ′′2 have to be isomorphic. If Y ′′1 is empty, we can replace w by the trivial element of AX
and we are done. Otherwise observe that Y ′′1 and Y ′′2 are subsets of {s2, . . . , sn}, which generates
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a braid group on n strands. By applying Proposition 11, we can find w′ ∈ A{s2,...,sn} ⊂ AX
performing the same conjugation as w on Y1 (if Y ′1 6= ∅, we can choose w′ ∈ A{s3,...,sn} commuting
with Y ′1).

Suppose now that AX is of type Dn (n odd) and that AS is of type Dm (m > n). Recall
(Table 1) that conjugation by ∆X leaves invariant s3, . . . , sn and permutes s1 and s2. If each of
the chosen subsets Y1 and Y2 contains at most one of s1, s2, up to replacing one of Yi (i = 1, 2)
by Y ∆X

i , we may assume that both Y1, Y2 are subsets of {s1, s3, . . . , sn}; the latter set defines
a braid group of type An−1 and Proposition 11 allows us to conclude.

Suppose that Y1 contains both s1 and s2. Then Y2 has to contain also both s1 and s2. To see this,
observe that the only ribbon adjacent to {s1, s2} is s3s1s2s3 which conjugates s1 to s2 and s2

to s1 and apply Lemma 4: it follows that s1 and s2 can be simultaneously conjugated in AS to
letters in S only if they are fixed or permuted with each other. As for type B, denoting by Y ′i
(i = 1, 2) the set of vertices of the (union of the) connected component(s) of ΓYi containing s1

and s2, we obtain Y ′1 = Y ′2 . We also see that the Y ′′i = Yi \ Y ′i define isomorphic subgroups of
the braid group A{s4,...,sn}, and we conclude as in type B case using Proposition 11 again.

4 Proof of Theorem 1

4.1 Irreducible case

Let AS be an irreducible Artin-Tits group of spherical type and let ΓS be its defining Coxeter
graph. Vertices of ΓS are numbered s1, . . . s#S , according to Figure 1. Let ∅ 6= X ( S such
that AX is irreducible. First, we observe that, as AX is a proper subgroup of AS , it cannot be
of type E8, F4, H4 or I2m, m > 5.

Suppose that the pair (AX , AS) does not satisfy any of the conditions (a) to (d) of Theorem 1(1).
The group AX cannot be either of type E7, D2k or H3; otherwise (AX , AS) would satisfy either
(b), (c) or (d). Finally, AX can be of type D5 (D7, respectively) only if AS is of type Dn, n > 6,
(n > 8, respectively); otherwise (AX , AS) would satisfy (a). Then Proposition 6, Proposition 11
and Proposition 12 show that AX is conjugacy stable in AS , as desired.

Therefore, to prove the first part of Theorem 1, one has to prove that AX is not conjugacy
stable in AS whenever (AX , AS) satisfies one of the conditions (a) to (d). Lemma 4 will be the
main tool to provide counterexamples. In each case (a) to (d), we shall exhibit two elements
of AX which are conjugate in AS but not in AX .

Let ΓX be the defining Coxeter graph of AX and number the elements of X x1, . . . , x#X ,
according to Figure 1. Notice that there might be different ways to embed ΓX as an induced
subgraph of ΓS ; following our notation, this is to say that a given xi may be equal to distinct sj ’s,
depending on the chosen embedding of ΓX in ΓS .

(a) Suppose that AX is of type D5 and AS is of type E6, E7 or E8. There are 4 different
embeddings ι : ΓX ↪→ ΓS , namely:

ι1 : x1 = s2, x2 = s3, x3 = s4, x4 = s5, x5 = s6,
ι2 : x1 = s3, x2 = s2, x3 = s4, x4 = s5, x5 = s6,
ι3 : x1 = s5, x2 = s2, x3 = s4, x4 = s3, x5 = s1,
ι4 : x1 = s2, x2 = s5, x3 = s4, x4 = s3, x5 = s1.

However to pass from one to another it suffices to pre- or post-compose by graph au-
tomorphisms which are induced by conjugation by ∆X or ∆{s1,s2,s3,s4,s5,s6} respectively.
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Therefore it is enough to give a pair of non-conjugate elements of AX whose images un-
der ι1 are conjugate elements of AS .

Take g = ι1(x1x3x2) = s2s4s3 and h = ι1(x4x3x2) = s5s4s3. The following product of
ribbons (each arrow indicates the conjugation by its label) conjugates g to h in AS :

Y = {s2, s3, s4} Y2 = {s1, s3, s4} Z = {s3, s4, s5}
r(s1, Y ) r(s5, Y2)

However, the only vertex in ΓX which is adjacent to {x1, x3, x2} is x4 and we observe
that r(x4, {x1, x3, x2}) = x4x3x1x2x3x4 normalizes A{x1,x3,x2}. Therefore, by Lemma 4,
x1x3x2 and x4x3x2 cannot be conjugate in AX .

(b) Suppose that AX is of type D7 and AS is of type E8. There is only one induced subgraph
of type D7 in ΓS and two ways of embedding it:

ι1 : x1 = s2, x2 = s3, x3 = s4, x4 = s5, x5 = s6, x6 = s7, x7 = s8,
ι2 : x1 = s3, x2 = s2, x3 = s4, x4 = s5, x5 = s6, x6 = s7, x7 = s8,

which differ by precomposing by the graph automorphism of ΓX induced by conjugation
by ∆X .

Take g = ι1(x1x3x2) = s2s4s3 and h = ι1(x4x3x2) = s5s4s3. We conclude exactly in
the same way as in (a): g and h are conjugate in AS but the only vertex t of ΓX which
is adjacent to {x1, x3, x2} produces an adjacent ribbon r(t, {x1, x3, x2}) which normal-
izes A{x1,x3,x2}. Therefore by Lemma 4, x1x3x2 and x4x3x2 are not conjugate in AX .

(c) Suppose that AX is of type E7 and AS is of type E8. We must have xi = si for all
1 6 i 6 7. Take g = s1s3s4s5s6 and h = s2s4s5s6s7. The following product of ribbons
conjugates g to h in AS :

Y = {s1, s3, s4, s5, s6}

Y2 = {s3, s4, s5, s6, s7} Y3 = {s4, s5, s6, s7, s8}

Z = {s2, s4, s5, s6, s7}

r(s7, Y )
r(s8, Y2)

r(s2, Y3)

However, a conjugation inAX by a sequence of adjacent ribbons never takes {x1, x3, x4, x5, x6}
to {x2, x4, x5, x6, x7}, as shows the following picture:

Y = {x1, x3, x4, x5, x6} Y2 = {x3, x4, x5, x6, x7}

r(x7, Y )

r(x1, Y2)

r(x2, Y2)r(x2, Y )
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Hence, by Lemma 4, x1x3x4x5x6 and x2x4x5x6x7 are not conjugates in AX .

(d) Suppose that AX is of type D2k. There exists X ( X ′ ⊆ S so that AX′ is of type D2k+1

so we can assume that AS is of type D2k+1. We have two possible embeddings

ι1: x1 = s1, x2 = s2, xi = si for 3 6 i 6 2k,
ι2: x1 = s2, x2 = s1, xi = si for 3 6 i 6 2k

which differ by post-composing by the graph automorphism of ΓS induced by conjugation
by ∆S . Let Y = {s1, s3, . . . , s2k} and Z = {s2, s3, . . . , s2k}.
The product of adjacent ribbons r1 = r(s2k+1, Y ) and r(s2, Y

r1) conjugates Y to Z
in AS ; it also conjugates the element s1s3 · · · s2k = ι1(x1x3 · · ·x2k) to s2s3 · · · s2k =
ι1(x2x3 . . . x2k). However, due to Lemma 4, the two elements x1x3 · · ·x2k and x2x3 . . . x2k

cannot be conjugate inside the parabolic subgroup AX because the only possible adjacent
ribbon – r(x2, {x1, x3, . . . , x2k}) – normalizes A{x1,x3,...,x2k}.

(e) Suppose that AX is of type H3 and AS is of type H4. There is only one possible embedding
and for 1 6 i 6 3, we have xi = si. We are going to prove that s1s3s3 and s3s1s1 are
conjugate in AS but not in AX . One can easily verify that conjugation by

r(s4, {s1, s3}) · r(s2, {s1, s4}) ·∆{s2,s3,s4} · r(s1, {s2, s4}) · r(s3, {s1, s4})

permutes s1 and s3 and hence conjugates s1s3s3 to s3s1s1.

However, Lemma 4 shows that x1x3x3 and x3x1x1 are not conjugate in AX because the
adjacent ribbon r(x2, {x1, x3}) commutes with x1 and x3.

This finishes the proof of the first part of Theorem 1.

4.2 Reducible case

Let AS be an irreducible Artin-Tits group of spherical type and let ∅ 6= X ( S such that AX is
reducible. Let ΓX be the subgraph of ΓS induced by X. We first make a preliminary observation.

Lemma 13. Let (AS , S) be any Artin-Tits system; let ΓS be the defining Coxeter graph. Two
letters s, t ∈ S are conjugate in AS if and only if the vertices s and t of the Coxeter graph ΓS
can be connected in ΓS by a path following only edges with odd labels (or no label).

Proof. Suppose that s, s′ are connected by an edge with odd label m or no label, in which case
we set m = 3. We have Π(s, s′;m−1)s = s′Π(s, s′;m−1) and s, s′ are conjugate. An immediate
induction shows that s, s′ are conjugate in AS whenever they are connected in ΓS by a path
following only edges with odd labels (or no label). Assume on the contrary that no path with
this property connects s and s′ in ΓS . It follows from (Bourbaki, 1968, Chap. IV, §1, no.3,
Proposition 3) that the respective images of s and s′ in the Coxeter group AS/〈〈s2, s ∈ S〉〉 are
not conjugate; therefore s and s′ cannot be conjugate either.

The previous result implies that if ΓX has two connected components that can be connected
through a path following only edges with odd labels (or no label) in ΓS , then AX cannot be
conjugacy stable in AS . The only cases that do not satisfy this condition are the cases (a) and
(b) of Theorem 1(2). Therefore, to finish the proof of our theorem we just need to show that
in these cases AX is conjugacy stable in AS .

In both cases, we have AX = AX1 ×AX2 , where AX1 is cyclic generated by a letter of S which
is conjugate to no other letter of X and AX2 is a braid group. By ??, the pair (AX , AS) has
Property ? and by Proposition 6, AX is conjugacy stable in AS . This completes the proof of
Theorem 1.
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Remark 14. A posteriori, one sees that, when AS is an Artin-Tits group of spherical type and
∅ 6= X ⊂ S, AX is conjugacy stable in AS if and only if (AX , AS) satisfies Property ?.
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Actualités Scientifiques et Industrielles, no. 1337. Hermann, Paris.

Brieskorn, Egbert, & Saito, Kyoji. 1972. Artin-Gruppen und Coxeter-Gruppen. Invent. Math.,
17(4), 245–271.

Coxeter, Harold S. M. 1935. The Complete Enumeration of Finite Groups of the Form r2
i =

(rirj)
kij = 1. J. Lond. Math. Soc., 1-10(1), 21–25.
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