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Abstract. We give an algorithm which decides the Nielsen-Thurston type
of a given four-strand braid. The complexity of our algorithm is quadratic

with respect to word length. The proof of its validity is based on a result
which states that for a reducible 4-braid which is as short as possible within
its conjugacy class (short in the sense of Garside), reducing curves surrounding
three punctures must be round or almost round. As an application, we give

a polynomial time solution to the conjugacy problem for non-pseudo-Anosov
four-strand braids.

1. Introduction

1.1. Statement of the main result. In the 1980’s Thurston gave a complete
classification of the elements of the mapping class groups of surfaces: periodic,
pseudo-Anosov, or reducible.

During the 1990’s, algorithms which decide the Nielsen-Thurston type of a given
mapping-class were constructed via the theory of train-tracks ([2], [16]). Unfortu-
nately, the complexity of these algorithms remains unknown. Even in the particular
case of the n-braid group Bn (i.e. the mapping class group of an n-times punctured
disk) the general problem of deciding whether a given braid is reducible or not
(which we call reducibility problem) has currently no known polynomial solution.

An alternative algorithm in this particular case, using Garside theory, is given in
the paper [14] (which builds on [15]). However, the complexity of the algorithm
in [14], while conjectured to be polynomial, strongly depends on an open question.
In the present paper we give a polynomial solution to the reducibility problem in
the particular case of 4-braids. More precisely we establish the following result:

Theorem 1.1. There is an algorithm which decides the Nielsen-Thurston type of
any given 4-braid x, and whose running time is O(l2), where l denotes the length
of x in the classical Artin generators σi.

Corollary 1.2. There is a polynomial time solution to the conjugacy search problem
for 4-strand braids in the non-pseudo-Anosov case, i.e. deciding whether two braids,
at least one of which is not pA, are conjugate, and if they are, finding a conjugating
element.

The plan of the paper is as follows. In this first section we recall some facts about
reducible braids and Garside theory; the second section is devoted to the proof of
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Theorem 1.1 and Corollary 1.2, modulo the key technical result (Proposition 1.9)
whose proof is deferred to the third section. Finally in the fourth section we give
some examples and conjectures related to the reducibility problem in braid groups.

1.2. Reducible braids. Let Dn be the closed disk in C with diameter [0, n + 1]
and with the points {1, · · · , n} removed. It is known that the n-braid group Bn is
identified with the mapping class group of Dn.

Hence there is a (right) action of the braid group on the set of isotopy classes of
simple closed curves in Dn. By abuse of notation we do not distinguish between a
simple closed curve and its isotopy class. We denote the curve resulting from the
action of the braid x on the curve C by C ∗ x. A simple closed curve is said to be
nondegenerate if it surrounds more than one puncture and less than n.

A braid x is said to be reducible if it preserves setwise a family of nondegenerate
simple closed curves; such a curve is then called a reduction curve for x. A reduction
curve of x is said to be essential if it does not cross any other reduction curve. The
set of all essential reduction curves of x is called the canonical reduction system
of x and denoted by CRS(x). It is known that the set CRS(x) is non-empty if and
only if x is reducible nonperiodic (see [6]).

A braid x is said to be periodic if some power of x is a power of the full twist ∆2.
Pure periodic braids are known to be powers of ∆2 (where ∆ is the half-twist of all
strands, defined in Artin’s generators by the formula

∆ = (σ1 . . . σn−1)(σ1 . . . σn−2) . . . (σ1σ2)σ1.)

In what follows we will take “reducible” to mean “reducible nonperiodic”. Note
that a braid x is reducible if and only if every power xt (with t ̸= 0) of x is reducible.
Note also that reducibility is a property invariant under conjugation.

The following definition, which comes from [18], uses the notion of canonical length
of a braid, which will be recalled in the next subsection.

Definition 1.3. We say that a simple closed curve in Dn is round if it is homotopic
to a geometric circle. The complexity of a simple closed curve C in Dn is defined to
be the smallest canonical length of a positive braid which sends C to a round curve
(or equivalently which sends a round curve to C).

Hence the curves of complexity 0 are the round curves; we shall call almost-round
the curves of complexity 1. In Figure 1 are represented three simple closed curves
in D4: the first is round, the second is almost-round and is sent to a round curve
by the permutation braid σ1σ3, the third is of complexity 2 and is obtained from
the first by applying σ−2

2 .

Let us introduce a notion which is closely related to Definition 1.3 (see [15]): the
minimal standardizer of a family C of disjoint simple closed curves in Dn is defined
to be the smallest positive braid (for the prefix order on Bn) which sends C to
a family of round curves. Hence the complexity of a curve C coincides with the
canonical length of its minimal standardizer. In particular, we may consider the
minimal standardizer of the canonical reduction system of a reducible braid.
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Figure 1

1.3. Garside theory. For an introduction to the classical Garside structure on
braid groups, the reader is referred to the papers [9] and [7] where the notion of
left normal form is defined. The second one also introduces the notions of inf, sup
and canonical length. Recall that if a braid x = ∆px1 · · ·xr is in left normal form
(where the xi’s are positive permutation braids) then sup(x) = p + r, inf(x) = p
and the canonical length of x, denoted by ℓ(x), is defined by ℓ(x) = r.

We also recall that the super summit set SSS(x) of a braid x is the (finite,
nonempty) subset of the conjugacy class of x containing all those elements which
have both minimal sup and maximal inf (or equivalently minimal canonical length)
within their conjugacy class [7]. The minimal value of ℓ within the conjugacy class
of a braid x is called summit canonical length of x and is denoted ℓs(x).

In order to be able to construct at least one element of SSS(x) for any given braid x,
let us recall a special kind of conjugation, the so-called cyclic sliding [11]. Let us
denote by τ the conjugation by the half-twist ∆, by ∧ the gcd associated to the
prefix order and, for a simple element z of Bn, by ∂(z) the right complement to ∆,
that is ∂(z) = z−1∆.

Definition 1.4 ([11]). Let x = ∆px1 · · ·xr be a braid in left normal form, with
r > 0; one defines the cyclic sliding, denoted s, by the following conjugation:

s(x) = p(x)
−1

xp(x) where p(x) = τ−p(x1) ∧ ∂(xr).

The simple braid p(x) is called the preferred prefix of x. (If ℓ(x) = 0, one also
can define cyclic sliding: in this case x is some power of ∆ and s is the trivial
conjugation).

In [11] it was shown that, starting from x and iteratively applying the cyclic sliding

operation (ℓ(x) − 1) · (n(n−1)
2 − 1) times yields an element of SSS(x). (This is

analogue to previous results of [7] and [5] concerning the so-called cycling and
decycling operations.) This leads to the following result:

Theorem 1.5 ([11]). There is an algorithm which takes as its input a braid x
with n strands, runs for time O

(
ℓ(x)2n2

)
, and outputs an element x′ of SSS(x)

which is of the form x′ = sk(x) for some k ∈ N.

The cyclic sliding operation behaves well with respect to the reducibility problem:

Proposition 1.6 ([12]). Let x = ∆px1 · · ·xr be a braid in left normal form and let
C be a round simple closed curve such that C ∗ x = C. Then the curve C ∗ p(x) is
also round. In particular, the braid s(x) also preserves a round curve.
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Now every reducible braid has some conjugate with round essential reduction
curves. Thus Proposition 1.6 together with Theorem 1.5 yields:

Corollary 1.7 ([1]). For any reducible braid x there exists an element of SSS(x)
with a round essential reduction curve.

We shall also need the following result which essentially comes from [10].

Proposition 1.8. Let x = ∆px1 · · ·xr be the left normal form of a reducible braid
which preserves a simple closed curve C of complexity s. Then the complexity of
the curve C ∗∆px1 · · ·xi is bounded above by s for every i with 1 6 i 6 k.

Proof. Notice that the case s = 0 in the proposition is proved in Theorem 5.7
in [1]. Let P be the minimal standardizer of CRS(x). By Theorem 4.9 in [15],
we have: inf(P−1xP ) > inf(x) and sup(P−1xP ) 6 sup(x). Under some minor
changes, Proposition 2.1 and Corollary 2.2 in [10] assert the existence of positive
braids P0 = τp(P ), P1, . . . , Pr such that

P−1xP has left normal ∆p(P−1
0 x1P1) . . . (P

−1
r−1xrPr)

(with possibly some indices 0 6 i′ < i′′ 6 r − 1 such that u−1
i xi+1ui+1 = ∆ for

i 6 i′ and u−1
i xi+1ui+1 = 1 for i > i′′) and

inf(Pi) > inf(P ), sup(Pi) 6 sup(P ) for i = 1 . . . r.

The case s = 0 of the current Proposition yields the roundness of the curves

(C ∗ P ) ∗ (∆p(P−1
0 x1P1) . . . (P

−1
i−1xiPi))

for all i = 1, . . . , r. The latter can now be rewritten as (C ∗ (∆px1 . . . xi)) ∗Pi. The
complexity of the curve C∗∆px1 . . . xi is thus at most ℓ(Pi) 6 ℓ(P ) = s. This shows
Proposition 1.8. �

The special case s = 0 of Proposition 1.8 together with Corollary 1.7, means that
for some (but not necessarily every) element of the SSS of a reducible braid,
reducibility is easy to detect.

However this is not sufficient in order to obtain a polynomial-time algorithm for
detecting reducibility since the size of the SSS may grow exponentially with both
word length and braid index (see [4]). This difficulty does not yet appear in the case
n = 3, as will be shown in Proposition 1.13. Our strategy for proving Theorem 1.1
is to show that also in the case of four strand braids, the reducibility is easy to see
for every element in the SSS. The following is our main technical result:

Proposition 1.9. Let x be a reducible 4-braid such that x ∈ SSS(x). Suppose
that x has an essential reduction curve surrounding 3 punctures. Then this curve
is round or almost round.

Notice that an essential reduction curve of a 4-braid x surrounding three punctures
is fixed by x (not sent to another reduction curve). Now, let us recall from [11] a
last Garside-theoretical notion:

Definition 1.10 ([11]). Let x = ∆px1 · · ·xr be a braid in left normal form. We
say that x is rigid if its preferred prefix is trivial, i.e. if the equality p(x) = 1 holds.
That means that the pair xrτ

−p(x1) is left-weighted.
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We end this section with some results specifically concerning 3-braids. We start by
recalling that in this case there are only four simple braids other than 1 and ∆ (i.e.
nontrivial strict prefixes of ∆), namely σ1, σ2, σ1σ2 and σ2σ1.

Proposition 1.11. Let x be a 3-braid with inf(x) = p and ℓ(x) = r. Let x1, . . . , xr ∈ B+
3

be non-trivial simple elements different from ∆. If x = ∆px1 · · ·xr, then this is the
left normal form of x.

Proof. If it was not, making the pair xixi+1 left-weighted (for some 1 6 i 6 r − 1)
either would create one factor ∆ (contradicting inf(x) = p) or would decrease the
number of factors (contradicting sup(x) = r + p), or both. �

Proposition 1.12. Let x be a 3-braid with ℓs(x) > 1. Then SSS(x) is the set of
rigid conjugates of x.

Proof. Let y be an element of SSS(x), written y = ∆py1 . . . yr in left normal form,
and suppose that y is non rigid. Consider the conjugate

z = (τ−p(y1))
−1yτ−p(y1) = ∆py2 . . . yrτ

−p(y1)

of y. As in the proof of Proposition 1.11, the non left-weightedness of the pair
yrτ

−p(y1) implies that z has smaller canonical length than y. This is a contradiction
because y ∈ SSS(x).

Conversely, it is easy to see, according to Theorem 1.5, that a rigid braid y conjugate
to x belongs to SSS(x) since in that case, s(y) = y. �

Proposition 1.13. The reducibility problem as well as the conjugacy search prob-
lem can be solved in polynomial time for three-strands braids.

Proof. We claim that in this particular case, the size of the Super Summit Set of
a braid x is bounded above by 2 · ℓs(x). Thus computing the whole Super Summit
Set of any 3-braid is doable in polynomial time according to Proposition 6.2 in [8]
and consequently, the reducibility problem and the conjugacy search problem can
be solved quickly.

Let us prove the claim we made. First, SSS of elements of canonical length 0 (that
is powers of ∆) contain only one element. Then, any braid of canonical length 1
is an element of its Super Summit Set since it is not conjugate to a power of ∆
and thus the canonical length is already minimal within the conjugacy class. Thus
as both letters σ1 and σ2 are conjugate to each other (by ∆) and because inf has
constant value in the Super Summit Set one has

SSS(∆kσ1) = {∆kσ1,∆
kσ2},

SSS(∆kσ1σ2) = {∆kσ1σ2,∆
kσ2σ1},

for any k ∈ Z.

Suppose then that we are given a braid x of summit canonical length ℓ > 1 together
with an element y = ∆py1 . . . yℓ (in left normal form) of SSS(x). Recall the cycling
operation, which consists, for a general braid u = ∆pu1 . . . ur in left normal form,
in the conjugation c(u) = (τ−p(u1))

−1uτ−p(u1) [7]. Applied to (Proposition 1.12)
our rigid braid y, we see that c(y) = ∆py2 . . . yℓτ

−p(y1) is in left normal form as
written and rigid. Notice that τ(y) as well belongs to SSS(x) and consider the
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first ℓ cyclings of both y and τ(y). This produces at most 2.ℓ elements of SSS(x)
(actually we have cℓ(y) = τ−p(y), which is y if p is even and τ(y) if p is odd
(recall that ∆2 is central) so that we have just computed either two closed orbits
under cycling conjugate by ∆ to each other or one closed orbit under cycling, self
conjugated by ∆). We thus have a subset O of SSS(x) closed by cycling and
conjugation by ∆. By Proposition 4.14 in [8], any other element v ∈ SSS(x)
must be the result of the conjugation of some z = ∆pz1 . . . zℓ ∈ O by a minimal
conjugator s. This minimal conjugator is a simple, and is shown in Corollary 2.7
in [3] (one can replace USS by SSS in this result without any change more) to be
either a prefix of τ−p(z1) or of ∂(zr) (not of both since z is rigid); since v is rigid,
one sees that s must actually be the whole factor, either τ−p(z1) (in which case
v = c(z)) or ∂(zℓ) (otherwise s−1vs would not be rigid). Noticing that

∂(zℓ)
−1z∂(zℓ) = cℓ−1(τp+1(z))

shows that we already had all the elements of SSS(x) in O. They are at most 2.ℓ,
as claimed. �

2. Proposition 1.9 implies Theorem 1.1

In this section we prove Theorem 1.1 with the aid of Proposition 1.9. The first
observation is that there are only 2 round curves and 4 almost-round curves sur-
rounding 3 punctures in D4 (see Figure 2).

Figure 2. Above, the round curves surrounding 3 punctures in
D4; below, the set of curves obtained from the above ones by apply-
ing a simple braid; i.e. the set of almost-round curves surrounding
3 punctures.

Lemma 2.1. There is an algorithm which decides in time O(l2) whether a 4-braid x
given as a word of length l in Artin’s generators, is reducible with an essential
reduction curve surrounding 3 punctures.

Proof. We recall that ℓ(x) 6 l(x) 6 6ℓ(x). Now according to Theorem 1.5, an
element y of SSS(x) can be computed in time O(l2). According to Proposition 1.9,
x admits an essential reduction curve surrounding 3 punctures if and only if y
preserves one of the six curves in Figure 2. The check whether this is the case
can be performed in time O(l): according to Proposition 1.8, it is sufficient to test
whether the images of these curves under each successive Garside factor of y are
still round or almost round. �
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In order to overcome the fact that we don’t have any analogue of Proposition 1.9
for curves surrounding 2 punctures, we will consider 4-braids as mapping classes
of a 5-punctured sphere by collapsing the boundary of D4. The five punctures lie
on the equator and we shall number them from 1 to 5, the fifth being the new
puncture, on the far side of the sphere.

In the following construction x will be supposed to be pure; this assumption is
fullfilled up to taking a power 2, 3 or 4. Then for j = 1, . . . , 4, blowing up the jth
puncture to become the boundary of a new 4-punctured disk D4 yields from x a
new 4-braid which we will denote by x̃j .

Lemma 2.2. For j = 1, . . . , 4, the length l(x̃j) of x̃j in Artin’s generators is
bounded above by 3l(x).

Proof. We show that each letter of x gives rise to no more than 3 letters. Let us
describe in detail how the first letter of x is transformed. In order to identify the
jth puncture with the new boundary we make a rotation of the equator bringing
jth puncture behind the sphere at the place of the fifth, and then we renumber the
punctures following the rule:

i ; i− j + 5 if i 6 j,

i ; i− j if i > j.

If the first letter of x is σi, for 1 6 i 6 j − 2 or for j + 1 6 i 6 n − 1, then
its image in x̃j is easy to compute: it is σi−j+5 or σi−j , respectively. If j > 2
and the first letter of x is σj−1, then this corresponds to a move of the puncture
numbered j − 1 which goes to the right above the puncture numbered j. After our
rotation the corresponding move involves the fourth puncture which goes above the
other punctures to the first position. This corresponds to the braid σ−1

3 σ−1
2 σ−1

1 . In
a similar way we can compute the images of all Artin’s generators:

σ±1
i ; σ±1

i−j+5 if i < j − 1,

σ±1
i ; σ±1

i−j if i > j,

σ±1
j−1 ; σ∓1

3 σ∓1
2 σ∓1

1 (for j > 2),

σ±1
j ; σ∓1

1 σ∓1
2 σ∓1

3 (for j 6 3).

Notice that the first letter of x induces a permutation of the punctures which
possibly sends the puncture numbered j to another position. Thus computing
the image of the second letter of x with the aid of the above formulae requires a
renumbering of the punctures, according to the permutation involved. The images
of the following letters of x are computed in the same way. �

Lemma 2.3. Let x be a reducible braid without any essential reduction curve sur-
rounding 3 punctures. Then there exists j between 1 and 4 such that x̃j is reducible
with an essential reduction curve surrounding 3 punctures.

Proof. Note that the reducibility of x is equivalent to the reducibility of each x̃j

for j = 1, . . . , 4. Now under the assumption of the lemma, x admits an essential
reduction curve surrounding 2 punctures. After collapsing the boundary of D4 this
curve divides the sphere into two connected components, one with 2 punctures,
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the other with 3 punctures. Blowing up one of the first two to the new boundary
achieves the proof of the lemma. �

To conclude the proof of Theorem 1.1, we can give the algorithm which solves the
reducibility problem in B4.

0 INPUT: A braid word x in the letters σ±1
i .

1 Compute a pure power xt of x and do x := xt.
2 Compute the left normal form of x.
3 Test whether x is periodic (that is test if x is a power of ∆2). If yes, then
RETURN “x periodic” and STOP. Else go to 4.

4 Apply iterated cycling to x until the inf has not increased during the last
five iterations. Do the same with decycling until the sup has not decreased
during the five last iterations.

5 For the element of SSS(x) obtained at the previous step, test whether it has
a round or almost round essential reduction curve surrounding 3 punctures.
If yes, RETURN “x reducible” and STOP. If not go to the following step.

6 For j = 1, . . . , 4, compute x̃j , apply to it steps 2 and 4. Test whether
the element of SSS(x̃j) thus obtained has a round or almost round essen-
tial reduction curve surrounding 3 punctures; if the answer is positive for
some j, RETURN “x reducible” and STOP. If the answer is negative for
all j, RETURN “x pseudo-Anosov” and STOP.

Proof of Corollary 1.2. Given two braid words x(1) and x(2) of length l in the gen-
erators σ±1

i (i = 1, 2, 3), we want to test whether they are conjugate, and we want
to do so in time O(P (l)), where P is a polynomial. In order to achieve this, we first
check whether they are periodic. If one of them is and the other one isn’t, then
they are not conjugate; if they both are, we are able to solve the conjugacy search
problem for them in polynomial time, see [4].

Next we want to check whether both braids admit a reducing curve surrounding
three punctures. In order to do so, we calculate (using iterated cycling) braids P1

and P2 such that P−1
i x(i)Pi ∈ SSS(x(i)). For each of these conjugated braids we

can decide whether they admit a round or almost round reducing curve surrounding
3 punctures (see Lemma 2.1). If one of them has and the other one has not then
they are not conjugate. If they both have then, possibly after adding one factor
to Pi, we can even assume that P−1

i x(i)Pi (for i = 1, 2) both have round reducing
curves. These two braids are now conjugate if and only if two conditions are
satisfied. Firstly the winding numbers of the outer strand with the three inner
strands must coincide, and secondly the inner 3-braids must be conjugate. Both of
these conditions can be checked very quickly (see Proposition 1.13).

The most difficult case occurs when neither of the braids admit a reducing curve
surrounding three punctures, and we have to check for reducing curves surrounding
two punctures. If a braid x(i) has a canonical reducing curve surrounding two
punctures, then a conjugate of x(i) in which the reducing curve is round can be found
as follows. We consider the twelfth power y(i) = x(i) 12 which is guaranteed to be
pure and which has the same canonical reduction curves as x(i). One of the braids

ỹ
(i)
j (j = 1, . . . , 4) has a canonical reduction curve surrounding three punctures.
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As in the previous paragraph, we can find a braid P̃i so that P̃−1
i ỹ

(i)
j P̃i has a

round canonical reduction curve surrounding three punctures. The corresponding
homeomorphism of the five times punctured sphere also has a reduction curve
intersecting the equator only twice. Thus as in the proof of Lemma 2.2 we can
explicitly write a 4-strand braid Pi such that the pure braid P−1

i y(i)Pi has a round

reducing curve surrounding two punctures. Thus the twelfth root P−1
i x(i)Pi has

the same round reducing curves.

To summarize, if the search for round reducing curves surrounding two punctures is
unsuccessful in both braids x(i) (i = 1, 2), then both braids are pseudo-Anosov, and
we cannot answer the question whether they are conjugate. If for one of them the
search is successful and for the other it is not, then the two braids are not conjugate.
If for both braids we find conjugates with round reducing curves surrounding two
punctures, then we consider for each of them a 3-braid z(i) obtained by merging
the two inner strands of a reducing curve into a single strand. We then solve the
reducibility problem for each of the z(i)’s. This can be done quickly, according to
Proposition 1.13. Our two braids x(i) are conjugate only if the braids z(i) have the
same Nielsen-Thurston type.

The braids z(i) cannot be periodic because otherwise the braids x(i) would have a
reducing curve surrounding 3 punctures. If the z(i)’s are pA, then the braids x(i)

are conjugate if and only if the following two conditions are satisfied. Firstly, the
winding numbers of the two inner strands must coincide, and secondly, the two
three-strand braids z(i) must be conjugate. Again, both of these conditions can be
checked in polynomial time. Finally if both braids z(i) are reducible, one can find
4-braids u(i) conjugate to x(i) so that u(i) has 2 round reducing curves, each of them
surrounding two punctures. Moreover, the conjugating element can be explicitly
written as a product of simple 4-braids corresponding to the conjugating 3-braids
occurring during iterated cycling applied to z(i), but with the strand corresponding
to the round reducing curve of P−1

i x(i)Pi duplicated. Now, the braids x(i) are

conjugate if and only if the winding number of the two fat strands in u(1) is the
same as in u(2), and if the two winding numbers of the pairs of strands inside
the two tubes of u(1) coincide with those in u(2). This can once again be checked
quickly. �

3. Proof of Proposition 1.9

3.1. Outline of the proof, notation. We shall give a proof by contradiction. So
let us suppose that there exists a reducible 4-braid in its own SSS which admits
an essential reduction curve of complexity 2 or greater than 2 surrounding 3 punc-
tures. By multiplying the braid by a sufficiently high power of ∆2 one may suppose
that it is positive. Moreover we may suppose this essential reduction curve to be
of complexity exactly 2. If it was greater, then the “convexity” of the SSS (see
Corollary 4.2. of [7]) and the existence in the SSS of a braid with round essential
reduction curve would yield another braid in the SSS with a complexity 2 essential
reduction curve.

Hence we start with a positive reducible 4-braid x in its own SSS with an essential
reduction curve of complexity 2 surrounding 3 punctures. Let us denote this curve
by C. We recall that C is fixed by x, because it is essential. We call outer the
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strand whose puncture base is not surrounded by the curve C, the other three are
inner. For the rest of this section we denote by x̂ the 3-braid z(i) obtained from x
by removing the outer strand.

The plan of the proof is as follows: first we list all curves of complexity 2 surround-
ing 3 punctures in D4. Next we prove that x and x̂ have the same canonical length,
and that x̂ is a rigid braid. Finally, using a careful case-by-case analysis, we show
that Proposition 1.8 and the rigidity of x̂ together imply that none of the curves in
our list can be an essential reduction curve for x.

3.2. Curves of complexity 2 surrounding 3 punctures in D4. Let us classify
the simple closed curves of complexity 2 surrounding 3 punctures in D4. In order
to describe them we may also consider isotopy classes of smooth arcs which start
at one of the punctures and end on the boundary of the disk, which moreover cross
every vertical line in the disk at most once and the horizontal axis at least once
(not counting the endpoints); these arcs are to be considered up to allowing the
ending point to slide along the boundary of the disk. The bijective correspondence
between the two notions is as follows: given such an arc γ we consider a tubular
neighborhood N of γ ∪ ∂D4; the corresponding simple closed curve is then the
boundary of Dn −N .

1

1

1

1

2

2

2

2

3

3

3

4

43

4

4

U

R

S

T

Figure 3

Figure 3 gives all the possibilities of such arcs. To see that these are the only
possibilities consider for instance arcs starting at the first puncture. Unless to have
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zero intersection with the horizontal axis, one can assume them (up to sliding the
endpoint) to end at the rightmost point of the horizontal diameter of the disk. Now,
the respective positions of the three remainding punctures, below or above the arc,
give all the possibilities (the 8 obvious ones minus those 2 where all the punctures
are simultaneously below or above).

We shall first make some remarks concerning this figure which will be useful for the
end of this section:

Remark 3.1. 1) Curves of type 1 and 2 are symmetric to each other with
respect to the horizontal axis. Hence acting by σi on one of these curves
and by σ−1

i on the other yields two curves with the same symmetry. The
curves of type 3 and 4 have the same properties between them.

2) One can obtain the curves 3 from the curves 2 (and 4 from 1) by applying
the half twist ∆4. Moreover this symmetry is preserved by the respective
actions of a braid x and its conjugate τ(x).

3.3. The two braids x and x̂ have the same canonical length. For a 4-braid y
with an essential reduction curve surrounding 3 punctures let us denote by vy the
number of crossings in y where the outer strand is involved, counted with sign.
This number is invariant under conjugacy. We remark that the winding number of
the outer strand with each other strand is

vy

6 .

Lemma 3.2. Let y be a positive reducible 4-braid with an essential reduction curve
of complexity 2 surrounding 3 punctures. Then vy < 3 sup(y).

Proof. Because y is a positive braid, y is a product of sup(y) simple braids. Because
each simple braid contributes at most 3 to vy, we have vy 6 3 sup(y). Suppose that
the equality holds, then each simple braid contributes exactly 3 to vy, so that the
outer strand crosses all the inner strands in each Garside factor of y. If the outer
strand is the first or the fourth then sup(y) is even because of the purity of this outer
strand, and the circle surrounding the punctures 2, 3, 4, or 1, 2, 3, respectively, is
preserved by y; this is a contradiction since both of these circles cross each of the
curves in Figure 3.
If the outer strand is the second or the third then the Garside factors of y other
than ∆ must be σ1σ2σ1σ3σ2 and σ2σ3σ2σ1σ2 alternately, so that by the purity
of the outer strand, sup(y) is also even and the circle surrounding the punctures
numbered 1 and 2 and the circle surrounding the punctures numbered 3 and 4 are
preserved by y. We conclude as above. �

We now see that removing the outer strand of x does not affect the canonical length:

Proposition 3.3. The following equalities hold: inf(x̂) = inf(x) and sup(x̂) = sup(x).

Proof. First notice that sup(x̂) 6 sup(x) and inf(x̂) > sup(x) because x̂ was ob-
tained from x by removing a strand. Let P be the minimal standardizer of C.
By removing the outer strand in P−1xP we obtain a 3-braid x′, conjugate to x̂:
if P ′ ∈ B3 is obtained from P by removing the outer strand, then x′ = P ′−1x̂P ′.
Since P−1xP preserves a round curve surrounding 3 punctures, its left normal form
can be written (see [15]) as

P−1xP = ⟨x0⟩x1,
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with x0 ∈ B2 and x1 ∈ B3. (This notation means that x1 is the braid obtained
from P−1xP by removing the outer strand and x0 is the 2-braid obtained when
considering x1 as a fat strand.) Note that x1 = x′. Hence if P ′′ is the 4-braid
obtained from P ′ by adding a trivial strand in the suitable position and if we
define X = P ′′P−1xPP ′′−1, then X = ⟨x0⟩x̂; that is X is a conjugate of x in which
we have a tubular braid equal to x̂ and an outer strand making vx

6 twists around

this “fat strand” (we also have x0 = σ
vx/3
1 ).

Now according to [15] one has

sup(X) = max(sup(x0), sup(x̂))

and because x ∈ SSS(x) one has sup(X) > sup(x).

Next we prove that sup(x0) < sup(X) (and in particular sup(X) = sup(x̂)). For
if we had sup(X) = sup(x0), then vX = 3 sup(X) because of the roundness of the
curve preserved by X; and by conjugacy vx = vX . Now, according to Lemma 3.2
we also have vx < 3 sup(x). Hence

vx < 3 sup(x) 6 3 sup(X) = vX = vx,

which is a contradiction. The second part of the proposition follows as

sup(x̂) 6 sup(x) 6 sup(X) = sup(x̂).

In a similar way we now have

inf(X) = min(inf(x0), inf(x̂)).

Moreover inf(X) < inf(x0), for if we had an equality, ∆− inf(X)X would be a split
braid (see Section 6 in [15]). Noticing that (by purity of the outer strand) inf(X) is
even, it would follow that ∆− inf(X)x is also split and positive (because x ∈ SSS(x),
one has inf(X) ≤ inf(x)) so that by Proposition 6.2 in [15] the outermost curves
in CRS(∆− inf(X)x) = CRS(x) are round. This is impossible since the only circles
which do not cross the curves in Figure 3 are inner to them. Hence

inf(X) = inf(x̂) > inf(x) > inf(X),

where the last inequality holds since x ∈ SSS(x). We finally obtain

inf(X) = inf(x̂) = inf(x).

Hence the proposition is shown and we remark also that X ∈ SSS(x). �

Corollary 3.4. With the above notations we have x̂ ∈ SSS(x̂).

Proof. Let us suppose by contradiction that there exists a 3-braid ẑ in the conjugacy
class of x̂ with inf(ẑ) > inf(x̂) or sup(ẑ) < sup(x̂). Let us also denote by ŷ
the conjugating element, that is ẑ = ŷ−1x̂ŷ. Let z be the 4-braid obtained by
conjugating X by ŷ augmented with a trivial strand in the suitable position, such
that z has the same round essential reduction curve as X and z = ⟨x0⟩ẑ.

By the same argument using Lemma 3.2 as in the proof of Proposition 3.3 (with z
playing the role of X), we have sup(z) = sup(ẑ) and inf(z) = inf(ẑ).

Now suppose that sup(ẑ) < sup(x̂). Then

sup(z) = sup(ẑ) < sup(x̂) = sup(x);
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which is a contradiction, because the braids z and x are conjugate and x lies in its
own SSS.

Similarly suppose that inf(ẑ) > inf(x̂). Then inf(z) = inf(ẑ) > inf(x̂) = inf(x).
This is again a contradiction. �

Corollary 3.5. The braid x̂ is rigid.

Proof. See Proposition 1.12. �

3.4. Analyzing the left normal form of x. Our strategy for proving Proposi-
tion 1.9 is to obtain a contradiction by proving the following statement:

Lemma 3.6. None of the curves in Figure 3 can be an essential reduction curve
for x.

We do this by analyzing precisely the factors of the left normal form of x. These
are composed of an inner 3-braid and possibly a move of the outer strand. Because
of the equalities sup(x) = sup(x̂) and inf(x) = inf(x̂) (see Proposition 3.3), and
according to Proposition 1.11, the factors of the left normal form of x̂ are exactly
the inner components of the factors of the left normal form of x. Recall that the
only nontrivial non-∆ simple elements in B3 are σ1, σ2, σ1σ2 and σ2σ1.

The following table gives all the possibilities of non-trivial non-∆ positive simple
braids in B4 depending on the position of the outer strand (at the beginning of
the braid) and on the value of the inner braid; for every possibility on the inner
braid there are 4 possibilities for the corresponding braid on 4 strands. For the rest
of this section we shall abbreviate “nontrivial non-∆ simple 4-braids” by “simple
4-braids” and they will be supposed positive unless otherwise stated.

hhhhhhhhhhhhhhhhhhhhInner factor

Number of the outer strand
1 2

σ1

σ2

σ2σ1

σ2σ1σ2

σ2σ1σ2σ3

σ1σ2

σ1σ2σ1

σ2σ1

σ2σ1σ3

σ1σ2

σ2σ3

σ2σ1σ3

σ2σ1σ3σ2

σ2σ1σ3σ2σ3

σ1σ2σ3

σ1σ2σ1σ3

σ2σ1σ3σ2

σ2σ1σ3σ2σ3

σ2

σ3

σ3σ1

σ1σ2σ3σ2

σ3σ1σ2

σ3

σ3σ1

σ3σ2

σ3σ2σ3

σ2σ1

σ3σ2σ1

σ3σ1σ2σ1

σ3σ2

σ1σ2σ3σ2σ1

σ3σ2σ1

σ3σ1σ2

σ3σ2σ3σ1

σ3σ1σ2σ1
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We saw that curves for which the outer strand is the third or the fourth are images
under the half-twist ∆ of curves for which the outer strand is the second or the
first, respectively. If the outer strand is the third (or the fourth) then the sim-
ple 4-braids whose interior component is σ1, σ1σ2, σ2, or σ2σ1, are images under
the automorphism τ of simple 4-braids with outer strand in second position (or
first position respectively) and whose inner component is σ2, σ2σ1, σ1, or σ1σ2,
respectively. This allows to construct the rest of the table.

3.5. Proof of Lemma 3.6. We make a constant implicit use of Proposition 1.8,
asserting that if ∆px1 · · ·xr is the left normal form of x and if x preserves one of
the complexity 2 curves, then for 1 6 i 6 r the image of the considered curve
under ∆px1 · · ·xi is again a complexity 2 (or lower than 2) curve. By the following
four lemmas we are going to eliminate all types of curves depicted in Figure 3.

Lemma 3.7. The curves of type T cannot be essential reduction curves of x.

Proof. First notice that it is sufficient to prove the claim for curves T1 and T2
(because of the symmetries between the curves).

For both curves T1 and T2 the outer strand is the first. The simple 4-braids whose
outer strand is the first and whose inner component starts with the letter σ2 or σ1

send the curve T1 or T2, respectively, to strictly more complex curves. By the
symmetries mentioned above, the simple 4-braids whose outer strand is the fourth
and whose inner component starts with the letter σ1 or σ2 send the curves T4 or
T3, respectively, to strictly more complex curves. Similarly, by Remark 3.1, the
action of a negative simple 4-braid whose outer strand is the first and whose inner
component starts with the letter σ−1

1 or σ−1
2 on the curve T1 or T2, respectively,

yields a strictly more complex curve (as does the action of a negative simple 4-braid
whose outer strand is the fourth and whose inner component starts with the letter
σ−1
2 or σ−1

1 on the curve T4 or T3, respectively).

Now suppose that the curve T1 or T2 is an essential reduction curve for x.

If inf(x) is even then the first factor of ∆− inf(x)x̂must start with the letter σ1 (or σ2,
respectively), by Proposition 1.8 and the previous paragraph. By the rigidity of x̂
the last factor of x̂ (which is the inner component of the last factor of x) must end
with the letter σ1 (or σ2, respectively). Because of the symmetries between the
curves T1 and T2 mentioned above, the image of the essential reduction curve at
the beginning of the last factor of x has to be of complexity greater than 2. This
contradicts Proposition 1.8.

If inf(x) is odd, then the essential reduction curve at the beginning of the first

non-∆ factor of x is T4 or T3, respectively. Thus the first letter of ∆
− inf(x)
3 x̂ must

be σ2, or σ1, respectively. And by the rigidity of x̂ the last letter of x̂ must then
be σ1, or σ2, respectively. As before we obtain a contradiction by considering the
symmetries with respect to the horizontal axis.

These two cases and the remark at the beginning of the proof together achieve the
proof of the lemma. �

Lemma 3.8. The curves of type U cannot be essential reduction curves for x.
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Proof. As before we prove the statement only for curves U1 and U2. We are going to
assume, for a contradiction, that one of the curves U1 or U2 is an essential reduction
curve for x. Hence Proposition 1.8 forces the image of this curve under each Garside
factor of x to be of complexity at most 2.

Claim 1. Assume that the curve U1 is an essential reduction curve for x. Then

the first letter of ∆
− inf(x)
3 x̂ is{

σ2 if inf(x) is even,

σ1 if inf(x) is odd.

Proof. Figure 4(a) is a guide for the proof of this claim. We are just going to use
Proposition 1.8 and the left-weightedness of pairs of consecutive factors of x̂.

First suppose that inf(x) is even. In order to show that the first letter of ∆− inf(x)x̂
is σ2, we are going to search which simple 4-braids could be the factors of the left
normal form of ∆− inf(x)x, provided the first letter of ∆− inf(x)x̂ is σ1. Among all
possible simple 4-braids whose outer strand is the second and whose inner com-
ponent starts with the letter σ1, only two do not increase the complexity of the
curve U1. These two are σ1σ2 and σ1σ2σ3. We prove that neither of these two
braids can be the first factor of ∆− inf(x)x.

The first sends U1 to S1 and the second to T1; their inner components are σ1

and σ1σ2, respectively. Now T1 is sent to strictly more complex curves by simple
four-braids whose inner component starts with the letter σ2 (by Lemma 3.7), thus
the only possibility left is the first.

Now the only simple 4-braids whose inner component starts with the letter σ1,
whose outer strand is the first (as in the curve S1) and which do not increase the
complexity of the curve S1 are σ2 and σ2σ3. The first fixes this curve and its inner
braid is σ1, the second sends S1 to T1 and its inner braid is σ1σ2; by the same
argument as above this second case is impossible.

Hence we have shown that if the first letter of ∆− inf(x)x̂ is σ1 then the curve U1

cannot be preserved by x. This shows the first part of the claim.

Now suppose that inf(x) is odd. The essential reduction curve U1 of x is transformed
(after the action of an odd number of factors ∆) into the curve U4 at the beginning
of the first factor of ∆− inf(x)x. This situation is analogous to the situation we
described in the proof of the first half of the claim, up to applying τ . This proves
the second part of Claim 1.

Claim 2. Assume that the curve U2 is an essential reduction curve for x. Then

the first letter of ∆
− inf(x)
3 x̂ is{

σ1 if inf(x) is even,

σ2 if inf(x) is odd.

Proof. This proof is illustrated in Figure 4(b). Again we look at which sim-
ple 4-braids can occur in the left normal form of ∆− inf(x)x.

First suppose that inf(x) is even. Among all simple 4-braids whose interior braid
starts with the letter σ2 and whose outer strand is the second, only two do not
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T2

σ2 · · ·

(a)

(b)

other
σ1 · · ·

σ1σ2σ3 & σ1σ2

σ2σ3 & σ1σ2

other σ1 · · ·
σ2 & σ1

other
σ2 · · ·

σ1σ3σ2σ1σ3 & σ1σ2

σ2σ3σ2σ1 & σ2σ1
σ1 · · ·

other σ1 · · ·

σ1σ3σ2σ1σ3 & σ2σ1

σ2σ3σ2 & σ2

σ1σ3σ2σ1 & σ1

σ1σ2 & σ1

U1

S1

σ2 · · ·T1

T1

S2

S3

U2

σ2 · · ·
T3

Figure 4. (a) The action on the curve U1 of simple 4-braids whose
inner component starts with the letter σ1. (b) The action on the
curve U2 of simple 4-braids whose inner component starts with
the letter σ2. Underlined letters σi indicate inner braids. Bold
crosses indicate curves of complexity greater than 2. We can also
see in (a) the action on the curve S1 of simple 4-braids whose inner
component starts with the letter σ1 and in (b) the action on the
curve S2 of simple 4-braids whose inner component starts with the
letter σ2. This will be used in Lemma 3.9

increase the complexity of the curve U2, namely σ2σ3σ2 and σ2σ3σ2σ1. The first
one has as its inner braid σ2 and it sends U2 to T3 whereas T3 is sent to strictly
more complex curves by all simple 4-braids whose inner component starts with the
letter σ2: this case cannot occur. The second one induces σ2σ1 on the inner strands
and sends U2 to S3.

Among all suitable simple 4-braids the only ones which do not increase the com-
plexity of the curve S3 are σ1σ3σ2σ1 and σ1σ3σ2σ1σ3. Their inner components
are σ1 and σ1σ2, and they send the curve S3 to T2 and S2, respectively. Because
simple 4-braids whose inner component starts with the letter σ1 always send T2 to
strictly more complex curves, the only possibility left is the second. The following
Garside factor of x is then preceded by the curve S2 and its inner braid starts with
the letter σ2. This situation is the image under τ of the situation at the beginning
of the preceding factor. Thus this third factor must be σ1σ3σ2σ1σ3 and at its end
the curve becomes S3, a situation we already treated. Hence we see that if the
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inner braid ∆− inf(x)x̂ starts with the letter σ2, then we never retrieve the curve U2.
This shows the first part of the claim.

Now, suppose that inf(x) is odd. In this situation, the odd number of factors equal
to ∆ transform U2 to U3. Up to applying τ we saw that no 3-braid starting with
the letter σ1 can be the inner braid of ∆− inf(x)x, hence ∆− inf(x)x has to start with
the letter σ2. This achieves the proof of Claim 2.

Now, since x̂ is rigid, if U1 is preserved by x then the last letter of x̂ must be σ2.
However using the symmetry with respect to the horizontal axis, the action of
negative simple 4-braids whose inner component starts with the letter σ−1

2 on the
curve U1 can be seen from the action of positive simple 4-braids whose inner com-
ponent starts with the letter σ2 on the curve U2. So we look at the action of the
reversed word rev(∆− inf(x)x) on the curve U2. Though this word, with separa-
tions as in the left normal form of x, is not necessarily in left normal form, the
word rev(∆− inf(x)x̂) is, by Proposition 1.11. We saw in the proof of Claim 2 that
this action cannot yield the curves U1 or U2. (Notice that in the proofs of the
two claims we only used the left-weightedness of the pairs of consecutive factors
in x̂ and the fact that the image of the essential reduction curve is of complexity
bounded by 2 after each Garside factor of x.) Similarly if U2 is preserved by x then
the last letter of x̂ must be σ1. An argument analogous to the previous one yields
the desired contradiction. �

Lemma 3.9. The curves of type S cannot be essential reduction curves for x.

Proof. The proof is similar to the proof of the previous lemma and can be derived
with the help of Figure 4. We just have to use an additional argument since in
fact there exist both: factors whose inner component starts with the letter σ1 and
which preserve the complexity of the curve S1 on one hand, and factors whose
inner component starts with the letter σ2 and which preserve the complexity of
the curve S2 on the other hand. However, in both cases these factors are unique
and ∆− inf(x)x only consists of repetitions of the following factors: σ2 in the first
case, yielding a circle preserved by x and which crosses the curves of type S (namely
the circle surrounding punctures 2, 3 and 4); σ1σ3σ2σ1σ3 in the second case, also
yielding circles having non-empty intersection with the curves of type S and being
preserved by x (the two circles surrounding punctures 1,2 and 3 and punctures 2,3
and 4). At this point we have achieved the analogues of Claims 1 and 2 of the
previous lemma; we conclude in the same way because of the rigidity of x̂. �

Lemma 3.10. The curves of type R cannot be essential reduction curves for x.

Proof. The proof is modeled on that of Lemma 3.8. We prove the statement only
for curves R1 and R2.

Claim 3. Assume that the curve R1 is an essential reduction curve for x. Then

the first letter of ∆
− inf(x)
3 x̂ is{

σ1 if inf(x) is even,

σ2 if inf(x) is odd.

Proof. See Figure 5(a).
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We first suppose that inf(x) is even. The only simple 4-braids whose outer strand
is numbered 1, whose inner component starts with the letter σ2, and which do not
increase the complexity of the curveR1 when applied to it, are σ3σ2σ1, σ3σ2 and σ3.
The first two have σ2σ1 as their inner braid, the third has σ2. SinceR1 ∗ σ3σ2σ1 = U1,
the following Garside factor of x (whose inner component has to start with the let-
ter σ1) must be σ1σ2 or σ1σ2σ3 as in the proof of Lemma 3.8. This implies that in
this case we can never retrieve the curve R1, nor obtain the curve R4.

We also have R1 ∗ σ3σ2 = T2. Because of Lemma 3.7 we can eliminate this case.
Finally σ3 (which has σ2 as its inner braid) fixes the curve R1. Thus the only

σ2σ3σ1σ2σ1 & σ2σ1

(a)

(b)

σ1 · · ·

σ1 · · ·

see Figure 4(a)

σ3 & σ2

σ3 & σ2

σ3σ2 & σ2σ1

σ3σ2σ1 & σ2σ1

σ1 · · ·
see Figure 4(b), up to τ

σ1 · · ·

σ2σ3σ1σ2σ3 & σ1σ2

σ2σ1σ2 & σ1

σ2σ1σ2σ3 & σ1

R1

R2

U1

T2

R1

U3

T4

R3

Figure 5. (a) The action on the curveR1 of simple 4-braids whose
inner component starts with the letter σ2. (b) The action on the
curve R2 of simple 4-braids whose inner component starts with
the letter σ1. Underlined letters σi indicate inner factors. Bold
crosses indicate curves of complexity greater than 2. Factors which
immediately yield more complex curves are not represented here.

possibility left, provided the first letter of ∆− inf(x)x̂ is σ2, is that x = ∆inf(x)σp
3 for

some natural integer p; in this case x preserves a round curve (the circle surrounding
punctures 2, 3 and 4) whose intersection with R1 is non-empty.

Up to applying τ (for the case when inf(x) is odd) this also shows the second
statement of the claim.
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Claim 4. Assume that the curve R2 is an essential reduction curve for x. Then

the first letter of ∆
− inf(x)
3 x̂ is{

σ2 if inf(x) is even,

σ1 if inf(x) is odd.

Proof. See Figure 5(b). We prove the claim only for even inf, the case of odd inf
is symmetric. The only simple 4-braids whose inner component starts with the let-
ter σ1 and which do not increase the complexity of the curveR2 are σ2σ1σ2, σ2σ1σ2σ3

and σ2σ3σ1σ2σ3. The first two induce σ1 on the inner strands. They yield U3 and T4,
respectively. By Lemma 3.7 we can exclude the latter. The first case is the image
under ∆ of the situation we described in Lemma 3.8. In this case we can never
obtain R2 or R3.

Finally the only possibility left is σ2σ3σ1σ2σ3 (which induces σ1σ2 as its inner
braid) and one has R2 ∗ σ2σ3σ1σ2σ3 = R3. According to the discussion just
above, the following Garside factor of x must be τ(σ2σ3σ1σ2σ3) = σ2σ1σ3σ2σ1

(since R3 = R2 ∗∆). This factor has σ2σ1 as its inner component and yields the
curve R2 when applied to the curve R3. This forces the braid ∆− inf(x)x to consist
of a succession of the factors σ2σ3σ1σ2σ3 and σ2σ1σ3σ2σ1 alternately. In this case x
preserves round curves (namely the two circles surrounding the punctures 1 and 2
and the punctures 3 and 4) which cross the curve R2. This achieves the proof of
the claim.

Claims 3 and 4 determine the last letter of x̂ because of the rigidity of x̂, and we
conclude exactly as we did in the previous lemmas. �

These last four lemmas imply Lemma 3.6; since we had an exhaustive description
of curves of complexity 2 in D4 surrounding 3 punctures, Proposition 1.9 is shown.

4. Examples and conjectures

In this last section we shall see that our result is sharp in some sense. We give some
examples which we obtained with the aid of [13].

The first example shows that we cannot remove the case of almost round curves in
the statement of Proposition 1.9.

Example 4.1. Let us consider the braid

x = σ1σ2σ3σ2.σ2σ1σ3.σ3σ1.σ3σ2σ1.σ1 ∈ B4,

which is in left normal form as written. Then x ∈ SSS(x) and x has an almost
round essential reduction curve surrounding 3 punctures and no round reduction
curve. See Figure 6(a).

There are similar examples for curves surrounding two punctures:

Example 4.2. Consider the 4-braid

y = σ3σ2σ3.σ2σ3σ1.σ3σ2.

Again y lies in its own SSS, has no round reduction curve, and preserves an almost
round curve surrounding 2 punctures. See Figure 6(b).
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(a) (b)

Figure 6. The braids x and y and their essential reduction curves.
The dashed lines separate Garside factors.

Now let us show that our result cannot be extended to the n > 5 case.

Example 4.3. Consider the braid

z = σ1σ2σ1σ3σ2σ1.σ1σ3.σ1σ3σ2σ4.σ2σ1σ4σ3σ2σ1.σ1σ2σ1.σ1σ2σ1σ3σ2.σ3 ∈ B5,

which is in left normal form as written. Then z ∈ SSS(z) and z has neither
round reduction curves, nor almost round reduction curves. In fact z preserves
the complexity 2 curve shown in Figure 7(a). Notice that the interior braid is
pseudo-Anosov.

We conjecture that our results can be improved:

Conjecture 4.4. Proposition 1.9 can be generalized to every simple closed curve
in D4 (even those surrounding 2 punctures) using the same kind of arguments.

However there are more curves of complexity 2 surrounding 2 punctures in D4 than
curves of complexity 2 surrounding three punctures in D4, thus the proof would be
more difficult.

We finish by briefly looking at two conceivable alternative approaches to the re-
ducibility problem in Bn, for every n ∈ N. The first one concerns the cyclic sliding
operation:

Conjecture 4.5. There is a polynomial bound on the number of times one has to
apply cyclic sliding in order to decrease the complexity of any essential reduction
curve which is not round or almost round.

Conjecture 4.5 would imply a polynomial algorithm for solving the reducibility
problem in all braid groups. This is because the results in [17] imply that the com-
plexity of any essential reduction curve of a reducible braid is linearly bounded by
the length of this braid. The following example shows that the most optimistic ver-
sion of Conjecture 4.5, namely that the complexity of the reduction curve decreases
in every single step, is wrong.
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(a) (b) (c)

Figure 7

Example 4.6. Consider the braid z in Example 4.3. After one cyclic sliding one
obtains from z the braid

s(z) = σ1σ3.σ1σ3σ2σ1σ4.σ2σ4σ3σ2σ1.σ1σ2σ3σ2σ1.σ1σ2σ3σ2.σ2σ1σ3σ2σ1.σ1

in left normal form, which still has a curve of complexity 2, shown in Figure 7(b),
as an essential reduction curve.

Another approach to the reducibility problem in Bn comes from the following:

Conjecture 4.7. Let x = ∆px1 · · ·xr be a reducible braid in left normal form such
that x ∈ SSS(x), and let C be an essential reduction curve of x. Then there is some
i between 1 and r such that the curve C is sent to a round or almost round curve
by the braid ∆px1 · · ·xi.

Note that Theorem 1.5, together with the truth of this conjecture, would yield a
polynomial time algorithm for solving the reducibility problem in Bn.

The hypothesis that x ∈ SSS(x) in the statement of Conjecture 4.7 is necessary,
as the following example shows:

Example 4.8. Let u = σ1σ2σ1σ3σ2.σ2σ3σ2σ1.σ1.σ1σ2σ3.σ3σ2 ∈ B4. The essential
reduction curve of u is of complexity 2 and it is sent to curves of complexity 2
after each Garside factor of u (see Figure 7(c)). Notice that the inner braid is also
pseudo-Anosov.
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