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Abstract. We present an algorithm for solving the conjugacy search problem

in the four strand braid group. The computational complexity is cubic with

respect to the braid length.

1. Introduction

The conjugacy problem is one of the three famous decision problems in groups first
formulated by Dehn in the early 20th century. The aim is to decide whether two
given elements x and y of a group G are conjugate in G, i.e. whether there exists
an element z in G such that x = z−1yz (which we shall denote x = yz). If so, then
an additional problem is to actually search for such a conjugating element z. These
two problems are called CDP (conjugacy decision problem) and CSP (conjugacy
search problem).

We know since Garside [17] that CDP and CSP are solvable for the braid groups Bn,
meaning that there exists an algorithm for solving these two problems in Bn, n > 1.
In fact, the properties of braid groups discovered in [17] are now known to hold for
a large class of groups, called Garside groups [13]; this class of groups contains for
instance all Artin-Tits groups of spherical type [7].

A Garside group is a group equipped with a Garside structure, that is, roughly
speaking, a lattice structure together with a distinguished element ∆ satisfying
some properties initially discovered by Garside for braids in [17]. A crucial output
of this is the left normal form for each element of a Garside group G: this is a
unique decomposition of the form ∆px1 . . . xr where the factors belong to the set of
the so-called simple elements. This provides a measure of the length of an element:
the canonical length `(x) of an element x ∈ G is the integer r in the decomposition
above. See Section 2 for more details. In the particular case of the braid groups, two
distinct Garside structures are known. The classical one, stemming from Garside’s
original article [17] and the dual one, introduced by Birman, Ko and Lee in [5].

Since Garside, several more and more powerful algorithms for solving CDP and
CSP have been proposed [15, 18, 19]. We briefly recall that each of the algorithms
[15, 18, 19] for solving CDP and CSP in a Garside group G is based on the cal-
culation, for any given x ∈ G, of a finite non-empty subset Ex of the conjugacy
class of x, satisfying Ex = Ey if and only if x and y are conjugate. The Super
Summit Sets (SSS) [15], the Ultra Summit Sets (USS) [18] and the sets of Sliding
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Circuits (SC) [19] are three examples of such characteristic subsets. Unfortunately,
despite the very high speed (in practice) of the most recent algorithms, the exis-
tence of a polynomial bound on the algorithmic complexity (with respect to the
length of the input) is still an open problem, even in the case of the braid groups.

The main result of the current article is the following:

Theorem 1.1. There exists an algorithm which solves CDP and CSP in the braid
group B4 and whose algorithmic complexity is cubic with respect to the length of the
input braid words.

We are not able to prove Theorem 1.1 using only the tools of Garside theory. We
shall also use a geometric point of view on braids. It is known (see e.g. [1]) that
the braid group Bn (n > 1) can be identified with the mapping class group of the
n-times closed punctured disk Dn. In this context, braids can be classified accord-
ing to their dynamical properties, in the following trichotomy (Nielsen-Thurston
classification) [11, 16]: a braid x is

• periodic, if there exists an integer m such that xm ∈ ZBn =
〈
∆2
〉
,

• reducible, if there exists a non-empty family F (called the canonical re-
duction system) of isotopy classes of nondegenerate disjoint simple closed
curves in Dn (non-degenerate means not null-homotopic, not homotopic
into a puncture and not boundary-parallel) such that

– the x-action leaves F invariant,
– no element of F intersects an other isotopy class of simple closed curve

in Dn which is invariant under some power of x
• pseudo-Anosov (pA) otherwise.

We remark that the definition of “reducible” most frequently found in the literature
also encompasses certain periodic elements. In this paper we only apply the word
“reducible” to the braids which would usually be called “reducible non-periodic”.

The paper [2] proposes a program, based both on the above classification and on
Garside theory, for solving CDP and CSP in the braid groups in polynomial time
with respect to both the length of the input braid words and their number of strands.
A first step in this program is the construction of a polynomial time algorithm for
deciding the dynamical type of any given braid (Open question 1 in [2]).

In [9], the authors answered this question in the case of the group B4: they produced
an algorithm of complexity O(`2) to decide the Nielsen-Thurston type of any given
4-strand braid of length `. Thus in the group B4, in order to solve CDP and CSP it
is sufficient to solve these problems for pairs of elements which are known to be of
the same dynamical type (as pairs of braids of different dynamical type are never
conjugate).

The algorithm given in [9] also implies a solution to CDP and CSP for reducible
four-strand braids of length at most ` in time O(`2). The main lemma here is that
for braids with at most 3 strands and of length at most `, the problems CDP and
CSP are solvable in time O(`2), see [9].

The case of periodic braids is treated in [4], where an algorithm of complexity
O(`3n2 log n) for solving CDP and CSP for periodic braids with n strands of canon-
ical length at most ` is presented.
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In order to prove Theorem 1.1, we thus have to produce an algorithm of complexity
at most O(`3) capable of solving CDP and CSP for pseudo-Anosov four-strand
braids of length at most `. Technically, our main contribution is the following
result, which gives a partial affirmative answer (in the special case of pseudo-Anosov
4-strand braids) to the Open Question 2 in [2]: using the vocabulary of [19], if a
4-strand pseudo-Anosov braid is rigid (meaning, roughly speaking, that the normal
form is as simple as possible), then its set of Sliding Circuits (and also its Ultra
Summit Set) is “small”:

Theorem 1.2. For every braid x in B4 which is pseudo-Anosov and rigid with
respect to the dual Garside structure, the cardinality of SC(x) for the dual structure
is bounded above by O(`(x)2).

This result implies that the algorithm given in [20] for solving CDP and CSP has
complexity O(`3) when applied to two 4-strand braids which are of length at most `,
pseudo-Anosov and rigid in the dual structure.

The rest of the proof of Theorem 1.1 thus has to consist of a reduction to the rigid
case. We shall prove, thanks mostly to Masur-Minsky’s conjugacy bound [24]:

Theorem 1.3. There is an algorithm with the following properties:

• as input, it takes two pseudo-Anosov braids x, y ∈ Bn of canonical length
at most `,
• as output, it yields an integer s and n-strand braids x̄, ȳ, z1 and z2 such

that x̄ and ȳ are rigid and satisfy x̄ = (xs)z1 and ȳ = (ys)z2 ,
• for any fixed n, the complexity is O(`2).

Then for n = 4, the quick solution to CDP/CSP for two rigid pseudo-Anosov braids
x̄ and ȳ results in a quick solution to the same problems for the initial pseudo-
Anosov braids x and y, because of the unicity of roots of pseudo-Anosov braids [21].
We are now in position to describe the algorithm promised by Theorem 1.1:

ALGORITHM:
INPUT: x and y two elements of the four-strand braid group.
OUTPUT: whether or not x and y are conjugate, and if they are, an element z ∈ B4

so that x = yz.

(1) Determine the dynamical types of x and y, using [9]. If they are not the
same, answer “x and y are not conjugate” and STOP.

(2) If x and y are periodic use [4] and STOP.
(3) If x and y are reducible, use [9] and STOP.
(4) If x and y are pseudo-Anosov, use the algorithm of Theorem 1.3 in order

to produce s, x̄, ȳ, z1, z2 with the required properties.
(5) Apply Algorithm 3 of [20] to x̄ and ȳ. If x̄ and ȳ are conjugate, then this

algorithm produces c ∈ B4 such that x̄ = ȳc. In this case answer “x is
conjugate to y by z2cz

−1
1 .” and STOP.

(6) Answer “x and y are not conjugate”.

Remark 1.4. Note that the preceding algorithm is completely explicit (in par-
ticular, we shall prove Theorem 1.3 by explicitly constructing the required algo-
rithm). However, our cubic bound on the algorithmic complexity in Theorem 1.1
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is not explicit, and this is due to the non-explicitness of Masur-Minsky’s conjugacy
bound [24]. More precisely, there are two things for which we have only existence
proofs, not explicit constructions, namely

(1) the quadratic function bounding the size of SC(x) in Theorem 1.2 (see
Proposition 5.12),

(2) the linear function bounding the number of cyclic slidings in the proof
of Theorem 1.3, and thus the quadratic bound on the complexity of the
algorithm in Theorem 1.3.

Remark 1.5. The proposed algorithm itself was probably known to experts in
the field. As is explained above, Steps 1 to 3 were known to have polynomial
complexity; thus our main contribution is showing the polynomial complexity of
Step 5 (Theorem 1.2) and Step 4 (Theorem 1.3, resting on Masur-Minsky’s linear
bound).

This paper is organized as follows. In Section 2 we recall some definitions and
basic facts about Garside groups. Assuming Theorem 1.2, we prove Theorem 1.3
and Theorem 1.1 in Section 3. The two last sections are devoted to the proof of
Theorem 1.2.

Acknowledgements. The authors are grateful to Juan González-Meneses for
suggesting a simplification in the proof of Theorem 1.2. The first-named author
was partially supported by a grant from Région Bretagne, by MTM2010-19355 and
FEDER, and by FONDECYT through postdoctoral grant no. 3130569 and the
Center of Dynamical Systems and Related Fields (project Anillo 1103).

After this paper was completed, Sang Jin Lee communicated to us that a (de-
gree 4) polynomial solution to the conjugacy problem in the 4-strand braid groups
was already present in his unpublished PhD Thesis [23]. He notably showed a (de-
gree 4) polynomial bound as in Theorem 1.2, also in the context of the dual Garside
structure.

2. The conjugacy problem in Garside groups

In this section we recall the definition and some general facts concerning Garside
groups and the known solutions to the conjugacy problem.

Definition 2.1. [19] Let G be a group. We say that G is a Garside group (of
finite type) if it admits a submonoid P satisfying P ∩ P−1 = {1} (the monoid of
positive elements) and a distinguished element ∆ ∈ P (Garside element) such that
the following properties hold:

(1) The partial order 4 on G defined by x 4 y if and only if x−1y ∈ P is
a lattice order, meaning that any two elements admit a greatest common
divisor and a least common multiple (note that it is invariant under left-
multiplication); this is called the prefix order,

(2) The set {x ∈ G, 1 4 z 4 ∆} is finite and generates G; its elements are
called simple elements,

(3) Conjugation by ∆ preserves the submonoid P ,
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(4) For every x ∈ P − {1},
||x|| = sup{k ∃ a1, . . . , ak ∈ P − {1}, x = a1 · · · ak} <∞.

In this context we also say that the triple (G,P,∆) is a Garside structure of finite
type for G.

Throughout this section, G denotes a Garside group with Garside structure (G,P,∆).
The greatest common divisor of two elements x, y of G with respect to 4 is denoted
by x ∧ y. We denote by τ the inner automorphism associated to ∆. Because it
preserves P and hence 4, the automorphism τ induces a permutation of the (finite)
set of simple elements, and since these elements generate G, τ is of finite order.

We also recall that every simple element s possesses a right complement ∂(s) defined
by the formula ∂(s) = s−1∆. This allows to define the notion of left-weightedness:
a pair of simple elements s1, s2 is said to be left-weighted if ∂(s1) ∧ s2 = 1, or in
other words if s1 is the greatest simple divisor of s1s2.

A crucial property of Garside groups is the existence of unique (left) normal forms:

Proposition 2.2. [13, 15] Let x ∈ G. There exists a unique decomposition x =
∆px1 . . . xr, where r is a non-negative integer, the factors xi are simple elements
such that x1 6= ∆, xr 6= 1, and (if r > 2) the pair xixi+1 is left-weighted for
i = 1, . . . , r − 1.

If the left normal form of x is ∆px1 . . . xr, the integers p and r are called the
infimum and the canonical length of x, and they are denoted by inf(x) and `(x).
They are respectively the maximal integer p ∈ Z such that ∆p is a prefix of x and
the minimal number of simple factors needed to express the element ∆−px. The
supremum sup(x) is the quantity p+r. For every element x of G, sup(x) = min{k ∈
Z, x 4 ∆k}.

We observe that the elements of canonical length zero are precisely the powers
of ∆; these elements are as simple as possible within their conjugacy class. For an
element x of positive canonical length and normal form ∆px1 . . . xr, one can define
its initial and final factor as

ι(x) = τ−p(x1), ϕ(x) = xr.

Remark 2.3. The set of simple elements, taken as a generating set of G, induces
a length function on G: the length |x| of an element x of G is by definition the
smallest possible length of a word representing x whose letters are simple elements
or their inverses. We note that always `(x) 6 |x|. We also have the following
relations, for any x satisfying inf(x) = p and `(x) = r [13, 12]:

|x| =


p+ r if p > 0,

r if p < 0 and |p| 6 r,
|p| if p < 0 and |p| > r.

We recall that G is equipped with different operations which are defined in terms
of normal forms, each corresponding to a particular conjugation.

Definition 2.4. [15] Let x ∈ G with normal form x = ∆px1 . . . xr. Suppose r > 1.
We define:
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• the cycling c(x) = xι(x) = ∆px2 . . . xrτ
−p(x1),

• the decycling d(x) = xϕ(x)
−1

= ∆pτp(xr)x1 . . . xr−1.

If `(x) = 0, we also define c(x) = d(x) = x.

More recently, Gebhardt and González-Meneses introduced a new type of conju-
gation which combines cycling and decycling into a single, conceptually simpler,
operation:

Definition 2.5. [19] Let x ∈ G with normal form x = ∆px1 . . . xr. Suppose r > 1.
We define the preferred prefix of x by the formula p(x) = ι(x) ∧ ∂(ϕ(x)). Cyclic
sliding is the operation s defined by

s(x) = xp(x).

If `(x) = 0 then we also define s(x) = x.

The aim of cycling, decycling and cyclic sliding is to simplify the left normal forms;
note that we have `(c(x)) 6 `(x), `(d(x)) 6 `(x) and `(s(x)) 6 `(x). Also note that
all of the three operations commute with the automorphism τ . Finally we make
the following computational observation, which will be very useful in the sequel:
if x is an element of G given in normal form, then its respective results under the
three previously defined special conjugations can be computed in time O(`(x)).

Proposition 2.6. [15] Let x ∈ G.

(i) [15] The subset of the conjugacy class of x consisiting of all elements with
minimal canonical length is finite and non-empty. Its elements have simul-
taneously maximal infimum and minimal supremum. This subset is called
the Super Summit Set of x, and denoted by SSS(x).

(ii) [15] There exist k0, l0 ∈ N such that for every k > k0 and l > l0, ck(dl(x)) ∈
SSS(x).

(iii) [19] There exists k0 ∈ N such that for every k > k0, sk(x) ∈ SSS(x).

The observation that s preserves SSS(x) implies that the set of periodic points of s
in the conjugacy class of x is a (finite) nonempty subset of SSS(x); this defines
another conjugacy invariant:

Definition 2.7. [19] Let x ∈ G. The set of Sliding Circuits of x is the set of all
conjugates of x which are periodic points of the cyclic sliding operation. That is,
SC(x) = {y ∈ xG | ∃k ∈ N, sk(y) = y}.

An important example of fixed points of s are the so-called rigid elements:

Definition 2.8. Let x ∈ G with normal form x = ∆px1 . . . xr. Suppose r > 1. We
say x is rigid if the pair ϕ(x)ι(x) is left-weighted.

In particular, an element of canonical length 0 is not rigid. Let us mention that
([2] Lemma 3.5) an element x ∈ G is rigid if and only if x−1 is.

One very useful quality of the Super Summit Set, which is not known to hold for
the set of Sliding Circuits (see Proposition 3.2) is that it can quickly be reached by
iterated cyclic sliding:
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Theorem 2.9. [6, 19] Let G be a Garside group. Then there exists a constant α,
which depends only on the group G and its Garside structure, such that for every
x ∈ G, s`(x)·α(x) ∈ SSS(x).

For instance in the case of the classical Garside structure on Bn we have α = n(n−1)
2 ,

and α = n− 1 for the dual structure. This result has a very important algorithmic
application: it yields an algorithm of complexity O(`2) for calculating an element
y ∈ SSS(x) for any given x ∈ Bn in normal form of canonical length `(x) = `. The
algorithm can even output an explicit conjugating element between x and y.

For the rest of the paper, we shall mostly be dealing with braids which lie in their
own Super Summit Set (because pushing braids into their own SSS only costs O(`2),
as we have just seen).

3. Proofs of Theorems 1.3 and 1.1

Throughout the section we shall assume Theorem 1.2 holds. Provided with the
precise definitions and vocabulary related to the conjugacy problem in Garside
groups, we now proceed to prove Theorems 1.3 and 1.1. The plan is to prove
Theorem 1.3 first, and then to prove the validity of the algorithm described in the
Introduction and to analyse its complexity.

First we recall one of the main results of [2]:

Theorem 3.1. ([2], Theorem 3.37) Let x ∈ Bn be a pseudo-Anosov braid. Then
there exists an integer m such that xm is conjugate to a rigid braid. Moreover, the

integer m can be bounded independently of the length of x: m < (n(n−1)2 )3 for the

classical Garside structure and m < (n− 1)3 for the dual structure.

The second main ingredient in Theorem 1.3 is Masur-Minsky’s linear conjugacy
bound [24], through the following result from [8] whose proof relies on the latter
bound. (Recall that s denotes the cyclic sliding operation – see Definition 2.5).

Proposition 3.2. ([8], Theorem 2) There exists a constant C, depending only on n
and on the chosen Garside structure, with the following property: if x ∈ Bn is a
pseudo-Anosov braid lying in its own Super Summit Set, and if x possesses some
rigid conjugate, then the conjugate sC|x|(x) is rigid.

This proposition yields a quadratic time algorithm for finding a rigid conjugate y
of any given pseudo-Anosov braid x satisfying x ∈ SSS(x), and also for finding a
conjugating element, provided a rigid conjugate exists at all.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. First recall that n is considered fixed. Let us denote β(n)
the upper bound on m in the statement of Theorem 3.1. Let x, y ∈ Bn be pseudo-
Anosov braids. Our aim is to algorithmically find rigid conjugates of xs and ys for
some s ∈ N.

Due to Theorem 3.1, there exist two integers ix and iy, both smaller than β(n),
such that xix and yiy are conjugate to rigid braids. For all i = 1, . . . , β(n) − 1



8 MATTHIEU CALVEZ AND BERT WIEST

simultaneously, our algorithm iterates the operation s starting from xi, until a
rigid braid is found. The corresponding power ix and a braid zx such that (xix)zx is
rigid are memorized. We denote x̃ this rigid conjugate of xix . The same procedure,
applied to y, yields an integer iy and braids zy and ỹ with the corresponding
properties.

Note that the algorithm so far is doable in time O(`2), where ` is the maximum
of the canonical lengths of x and y. In order to prove this, we remark that the
canonical length of all the braids xi and yi, for i = 1, . . . , β(n) − 1, is bounded
above by β(n)`. By Theorem 2.9 and Proposition 3.2, the number of iterations
needed in order to find x̃ is linearly bounded with respect to this length β(n)`.
Finally, each iteration of the operation s on a braid of canonical length ` takes
time O(`)(see [20]).

Let s = lcm(ix, iy). Since powers of rigid braids are again rigid, xs and ys are
conjugate to rigid braids. So all our algorithm has to do now is to calculate s, and

output x̄ = x̃
s
ix , ȳ = ỹ

s
iy , and z1 = zx, z2 = zy. This satisfies the requirements

of Theorem 1.3. �

Proof of Theorem 1.1. We have to prove that the algorithm described in the in-
troduction is valid and of complexity O(`(x)3). Steps (1) and (3) are of complexity
O(`2), as was shown in [9]. Step (2) is of complexity O(`3) (see Theorem 1 in [4]).
Step (4) is of complexity O(`2), by Theorem 1.3. Finally, Theorem 4.11 of [20]
ensures us that Algorithm 3 in [20] correctly solves CDP and CSP for rigid braids
of length at most ` in time O(` · κ), where κ denotes the cardinality of the sets of
Sliding Circuits of the input braids. Our Theorem 1.2 now implies that step (5)
of our algorithm has complexity O(`3). Finally, step (5) gives the correct answer,
because of [21] (Subsection 4.2). Indeed, it is shown there that for any m ∈ N, any
pseudo-Anosov braid has at most one mth root, so that the relation x̄ = ȳc for a
braid c (i.e. (xs)z1 = ((ys)z2)c) is equivalent to the relation xz1 = yz2c, which is in
turn equivalent to x being conjugate to y by z2cz

−1
1 . �

It therefore remains to prove Theorem 1.2; this occupies the rest of the paper.

4. Prerequisites for the proof of Theorem 1.2

We advise the reader that none of the results in this section are new; however, we
shall introduce some non-standard notation which will be useful in the proof.

4.1. Sets of Sliding Circuits of rigid elements. Our aim is to describe the
structure of the set of Sliding Circuits of a rigid element of a Garside group. We
use the same notations as in Section 2. The following results are proven in [19],
for any element rigid or not. First we note that the set SC(x) is stable under
conjugation by ∆, cycling and decycling.

Definition 4.1. [19] Let x ∈ G and y ∈ SC(x). A simple, non-trivial element s
of G is said to be a minimal arrow for y if ys ∈ SC(x) and if the only positive
prefixes t of s with yt ∈ SC(x) are t = 1 and t = s.
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Proposition 4.2. [19](See also [3], Corollary 2.7). Let x ∈ G. For every y ∈
SC(x), the minimal arrows for y are prefixes of ι(y) or of ∂(ϕ(y)).

Definition 4.3. [19] To every element x of G we associate a connected, oriented
graph SCG(x) describing the set SC(x) as follows:

• the graph has one vertex for every element of SC(x),
• for every element y of SC(x) and every minimal arrow s for y, the graph
SCG(x) has an oriented edge from the vertex y to the vertex ys. This edge
is labelled s.

When x has a rigid conjugate, the graph SCG(x) has a particularly elegant struc-
ture, which we describe now. Our study is based mainly on the following proposition
from [19]:

Proposition 4.4. ([19], Theorem 1) Let x ∈ G. Suppose that x has a rigid conju-
gate. Then SC(x) is precisely the set of all rigid conjugates of x.

Definition 4.5. Let x ∈ G be a rigid element, and let y ∈ SC(x). The orbit of y
is the set Oy = {τkcl(y) | k, l ∈ N}.

Lemma 4.6. Let x ∈ G be a rigid element, and let y ∈ SC(x).

(i) The orbit Oy is a subset of SC(x).
(ii) The orbit Oy is stable under cycling, decycling, and τ ; in particular, for

every z ∈ Oy, zι(z) and z∂(ϕ(z)) are element of Oy.
(iii) Let y1, y2 ∈ SC(x). Then Oy1 6= Oy2 if and only if Oy1 ∩Oy2 = ∅.
(iv) The cardinality of the orbit Oy is bounded above by f · `(y), where f is the

order of τ).

Proof. Just observe that cycling and decycling induce cyclic permutations (up to
τ) of the non ∆ factors of the normal form of a rigid element. �

For the rest of this subsection we shall always suppose that x is rigid. The rela-
tion ∼, defined by x ∼ y if and only if Ox = Oy, is an equivalence relation on SC(x),

and SC(x) is the disjoint union of the different orbits Oy. We denote by S̃C(x) the

quotient set SC(x)/∼. We now associate a “quotient graph” S̃CG(x) to S̃C(x) in
the same way as SCG(x) is associated to SC(x). In order to do this rigorously, we
need the following definition:

Definition 4.7. Let y ∈ SC(x) be rigid, and let s be a minimal arrow for y. We
say s is a minimal useful arrow if ys /∈ Oy.

Remark 4.8. According to Proposition 4.2 and Lemma 4.6 (ii), the minimal useful
arrows for y are strict prefixes of ι(y) or of ∂(ϕ(y)).

We recall the notion, due to Gebhardt [18], of the transport under cycling of an
arrow: if y, s ∈ G, we define the transport under cycling of s at y by the formula

s
(1)
y = ι(y)−1sι(ys). It is known ([18], Corollary 2.7) that the transport induces a

bijection between the set of minimal arrows for y ∈ SC(x) and the set of minimal
arrows for c(y). Similarly, conjugation by ∆ induces a bijection between the mini-
mal arrows for y and the minimal arrows for τ(y). In particular, if s is a minimal
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useful arrow between y and ys, then s
(1)
y is a minimal useful arrow between c(y)

and c(ys), and τ(s) is a minimal useful arrow between τ(y) and τ(ys). Thus we can
define the desired quotient graph without any ambiguity (i.e. the arbitrary choices
made in the following definition do not matter):

Definition 4.9. To every rigid element x of G we associate a connected, oriented

graph S̃CG(x) as follows:

• The vertices of the graph correspond to elements of S̃C(x),

• For every element Oy ∈ S̃C(x), we arbitrarily choose a representative y′

of Oy. Now, to any minimal useful arrow s for y′, from y′ ∈ Oy to z′ ∈ Oz,
we associate an edge of the graph, oriented from Oy to Oz.

In order to bound the size of SC(x), it suffices to bound the number of vertices

of S̃CG(x): if S̃CG(x) has k vertices, then the cardinality of SC(x) is at most
k · f · `(x) (due to Lemma 4.6 (iv)).

4.2. The dual structure of B4. A detailed account of the dual Garside structure
on braid groups can be found in the original article [5], and an introduction in
Chapter VIII of [14]. We restrict ourselves here to a brief description of this struc-
ture in the case of the four-strand braid group B4. We consider the sub-monoid
BKL+

4 of B4 generated by the braids ap,q, 1 6 p < q 6 4, where

ap,p+1 = σp for p = 1, . . . , 3,

a1,3 = σ−12 σ1σ2,

a2,4 = σ−13 σ2σ3,

a1,4 = σ−13 σ−12 σ1σ2σ3.

The notation BKL is derived from the names of the discoverers of this structure:
Birman, Ko and Lee. The monoid BKL+

4 induces a partial order relation on B4:
x 4 y if and only if x−1y ∈ BKL+

4 . Taking as Garside element the braid δ =
σ1σ2σ3, these data give rise to a new Garside structure, which we denote BKL4.
For instance, we shall write x ∈ BKL4 in order to say that x is a four-strand braid
seen in the structure BKL4, and given as a product of the generators ai,j .

We now introduce some notation concerning the BKL4-structure which we shall be
using for the rest of the article. We recall that B4 can be seen as the mapping class
group of the four times punctured disk D4. In the context of the BKL4-structure it

is practical to parametrize D4 as the unit disk in C with punctures Pj = 1
2e
− i(2j−1)π

4 ,
for j = 1, . . . , 4. The braid ap,q then corresponds to the counterclockwise half
Dehn-twist along the arc (Pp, Pq). Pictorially, we will represent the braid ap,q by
the segment (Pp, Pq); for instance, a2,4 is denoted (), a1,4 is written (), and so on.
Similarly, the braid which cyclically exchanges P3, P2 and P1 by a counterclockwise
movement is denoted (). With this notation, the generators ap,q are subject to the
following relations:

()() = ()() = (), ()() = ()() = (),

()() = ()() = ()() = (), ()() = ()() = ()() = (),

()() = ()() = ()() = (), ()() = ()() = ()() = ().
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The Garside element is δ = (). Conjugation by δ corresponds to a one-quarter
counterclockwise turn, and τ is an automorphism of order 4 of B4. Therefore,
Lemma 4.6(iv), applied to the BKL4-structure, states that the orbit of a rigid
braid x contains at most 4 · `(x) elements.

Our proof of Theorem 1.2 is based on the simplicity of the lattice of simple elements
of BKL4. It has only 14 elements:

1, (), (), (), (), (), (), (), (), (), (), (), (), δ.

The relations listed above are length-preserving (the word length on the letters
ap,q). This allows us to define a morphism λ : B4 −→ Z by sending every braid ap,q
to 1. For any braid x, we call λ(x) the weight of x. We have λ(δ) = 3 and for
any other simple nontrivial element s we have λ(s) = 1 or 2. This observation
(as already noted in [6]) yields a new quantity, in addition to canonical length,
supremum and infimum, which is constant inside the Super Summit Set:

Lemma 4.10. Let x ∈ BKL4, and let y ∈ SSS(x). For every z ∈ SSS(x), the
normal form of z contains as many factors of weight 2 and as many factors of
weight 1 as the normal form of y.

Proof. For every braid x ∈ BKL4, if k1 is the number of factors of weight 1 and k2
the number of factors of weight 2 in the normal form of x, then `(x) = k1 + k2 and
λ(x) = 3 inf(x) + 2k2 + k1. Thus k1 and k2 are constant in the Super Summit Set,
since canonical length, weight, and infimum are constant there. �

Again concerning the weight of the factors of a normal form, we make the following
simple observation which will be needed later.

Remark 4.11. Recall that if x has normal form δpx1 . . . xr, then its inverse x−1

has normal form δ−p−rx′r . . . x
′
1, where x′i = τ−p−i(∂(xi)) ([2], Theorem 1.5 for any

Garside group). In particular , we have for the BKL4 case λ(x′i) = 3− λ(xi).

The following very simple remark will turn out to be very useful:

Remark 4.12. Let a and b be two simple elements for BKL4. If a is of weight 2
and δ does not divide the product ab, then the pair a · b is left-weighted.

We finally claim that in the BKL4 structure, the existence of a minimal useful
arrow s from y′ ∈ Oy to z′ ∈ Oz is equivalent to the existence of a minimal useful

arrow from z′ ∈ Oz to some element of Oy. (In other words, every edge in S̃CG(x),
for G = BKL4, is oriented both ways.) Let us prove this claim. According to
Remark 4.8, such a minimal arrow s is a strict prefix either of ι(y′) or of ∂(ϕ(y′)).
In particular, λ(s) = 1. Now there is an arrow, which is of weight 1 and thus
minimal, given in the first case by s−1ι(y′) from z′ to c(y′), and in the second case
by s−1∂(ϕ(y′)), from z′ to τd(y′).

5. Proof of Theorem 1.2

Throughout this section, we use the dual Garside structure on B4. Our aim is to
prove Theorem 1.2, so we consider a rigid pseudo-Anosov braid x, and we try to
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bound the size of SC(x). The hypothesis that x is pseudo-Anosov implies that the
canonical length of x is strictly larger than 1 (this can be proven by analysing all
braids with canonical length 1).

We shall see that it suffices to prove Theorem 1.2 separately in three special cases,
which are defined in terms of the simple factors occurring in x (see Subsection 4.2).
We will consider successively the following three cases:

• The normal form of x contains at least one factor of weight 1 and one factor
of weight 2 – this case is solved in Proposition 5.1. (Notice that all other
elements of SC(x) will have the same property, by Lemma 4.10).
• There exists an element y of SC(x) such that all the factors other than δ

occurring in the normal form of y belong to {(), (), (), ()} – this case is
solved in Proposition 5.3.
• For every element y of SC(x), all the factors other than δ occurring in the

normal form of y are of weight 1, and at least one of them is () or () – this
case is solved in Proposition 5.12.

In the first two cases, the hypothesis that x should be pseudo-Anosov is in fact
unnecessary. In these cases, we even construct a linear bound on #SC(x). The
third case requires much more sophisticated techniques, and gives rise to an example
showing that the quadratic bound is optimal.

5.1. A simple special case. We now describe a simple special case where Theo-
rem 1.2 can be proved by elementary arguments.

Proposition 5.1. Let x ∈ BKL4 be a rigid braid whose normal form contains at
least one factor of weight 1 and at least one factor of weight 2. Then the set SC(x)
consists only of Ox and in particular #SC(x) 6 4 · `(x).

Proof. We shall see that no strict prefix of ι(x) (nor of ∂(ϕ(x))) can conjugate x
to a rigid braid and in particular x has no minimal useful arrow. Suppose on the
contrary that t ≺ ι(x) and that xt is rigid. Then using the fact that the transport
under cycling (already alluded to above in the paragraph before Definition 4.9)
preserves the order 4 ([18], Corollary 2.2 (b)), we see that the transport t(1) of t
satisfies 1 ≺ t(1) ≺ ι(c(x)) (and conjugates c(x) to the rigid braid c(xt)). Iterating
this argument we see that all factors of x must have weight 2, contradicting our
hypothesis. On the other hand, if t were a strict prefix of ∂(ϕ(x)), the same line of
argument applied to x−1 would finally establish that all factors of x have weight 1
(Remark 4.11). The latter part of the claim in Proposition 5.1 follows immediately
from the former together with Lemma 4.6(iv). �

Now, in order to prove Theorem 1.2, we have to find a quadratic bound on the size
of SC(x) for any rigid pseudo-Anosov braid x ∈ BKL4. By Proposition 5.1, we can
restrict our attention to braids whose normal form has all its factors (other than δ)
of the same weight (1 or 2). Up to considering inverses, we can restrict ourselves to
the case of weight 1 (see [3], Subsection 3.1 where it is shown that when x is rigid
(and so is x−1), the graphs SCG(x) and SCG(x−1) are isomorphic).

So for the rest of the proof of Theorem 1.2, we can suppose that x is a rigid pseudo-
Anosov braid whose normal form has only factors of weight 1 (i.e. (), (), (), (),
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(), ()), and δ±1. By Lemma 4.10, all elements of SSS(x) have the same property.
Moreover, using Remark 4.8, we see that for every y ∈ SC(x), all possible minimal
useful arrows for y are strict prefixes of ∂(ϕ(y)) (there is no strict non-trivial prefix

of ι(y) because λ(ι(y)) = 1). In particular, all vertices of S̃CG(x) have degree at
most 3.

We make one more simple, but very useful general observation:

Lemma 5.2. Suppose that the normal form of the rigid braid y ∈ SC(x) has only
factors of weight 1 (and δ±1), with at least one factor equal to () or to (). Then

the vertex Oy of S̃CG(x) is of degree at most 2.

Proof. Up to replacing y by y′ ∈ Oy, we can suppose that ϕ(y) = (). But ∂(()) = (),
and this simple element has only two strict positive prefixes. �

We split the rest of our argument into two parts. In Subsection 5.2, we study
the case where SC(x) contains an element that does not satisfy the hypotheses of
Lemma 5.2, i.e. an element whose normal form contains, apart from δ±1, only the
letters from {(), (), (), ()}; we shall denote the latter set E . By contrast, Subsec-
tion 5.3 deals with the case where all elements of SC(x) satisfy the hypotheses of
Lemma 5.2.

5.2. Some element of SC(x) has all its factors in E. We recall the notation
E = {(), (), (), ()}. Our aim in this subsection is to prove the following result, whose
proof is elementary but involves a lot of careful case-checking:

Proposition 5.3. Let x ∈ BKL4 be a rigid braid. Let us suppose that SC(x) con-
tains some element y whose normal form has all of its factors (apart from δ±1)

belonging to E. Then the graph S̃CG(x) has at most six vertices. Moreover,
#SC(x) 6 24 · `(x).

The last sentence of Proposition 5.3 follows immediately from the preceding one,
together with Lemma 4.6 (iv).

First we note that in order to prove Proposition 5.3, it suffices to prove that for

some non-zero integer m ∈ N the graph S̃CG(xm) has at most 6 vertices. Indeed,

since all braids in SC(x) are rigid, there is an injection from S̃C(x) to S̃C(xm),
sending an orbit Oy to an orbit Oym .

So possibly after replacing x by x4, we can suppose that inf(x) is a multiple of 4.
In fact, since for any integer m, multiplication by δ4m induces an isomorphism
between SC(x) and SC(δ4mx), we can even suppose that inf(x) = 0 (and thus that
the infimum of any element of SSS(x) is zero).

So for the rest of the proof of Proposition 5.3, we shall assume that for y (and hence
for all elements of Oy) the normal form has all letters belonging to E .

Remark 5.4. Conjugation by δ induces a permutation of E . Moreover, for all
s, t ∈ E , the product st is in normal form if and only if t ∈ {s, τ(s)}.

Remark 5.4 allows us to give a precise description of the normal form of y:
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Lemma 5.5. Let y ∈ BKL4 be a rigid braid with inf(y) = 0, all of whose factors
belong to E. Then, possibly after replacing y by another element of Oy, the normal
form of y is of the form

y =

r∏
j=1

τ−r+j
(

()
kj
)
,

where the kj, j = 1, . . . , r are strictly positive integers, and r = 1 or r ≡ 0 (mod 4).

Proof. Up to conjugating y by a power of δ, we can suppose that ϕ(y) = (). By
Remark 5.4 and our hypothesis on y, the normal form of y is indeed a product of
the form

y = τ−(r−1)
(

()
k1
)
. . . ()

kr

for integers r and k1, . . . , kr all strictly positive. Then, due to rigidity and Re-
mark 5.4, we have ι(y) = ϕ(y) or ι(y) = τ (ϕ(y)). Let us suppose that r > 1. Up
to cycling, we can suppose ι(y) = τ (ϕ(y)), which means that τ−r+1 (()) = τ (()).
This implies that r ≡ 0 (mod 4). �

Lemma 5.6. If r = 1 in Lemma 5.5, then #SC(x) = 6.

Proof. If r = 1 then SC(x) = {()k1 , ()k1 , ()k1 , ()k1 , ()k1 , ()k1}. �

Lemma 5.7. Suppose that r > 1 in Lemma 5.5. Then there exists a minimal arrow
for y if and only if r ≡ 0 (mod 3). If this is the case, then y admits in fact three

minimal (but not necessarily useful) arrows. If not, then the graph S̃CG(x) has a
single vertex.

Proof. According to Lemma 5.5, we have r ≡ 0 (mod 4), and we can rewrite

y =

m∏
j=1

(
()
kj,1()

kj,2()
kj,3()

kj,4
)

=:

m∏
j=1

αj ,

with m := r
4 and kj,i > 0 for all j, i with 1 6 j 6 m and 1 6 i 6 4. The minimal

useful arrows for y, if they exist, are all strict prefixes of ∂(()), so they are (), () or
().

The proof of the lemma essentially comes down to the following calculations, where
the right hand sides of the equations (except for their first factor) are always in
normal form; in other words, Aj , Bj and Cj are normal forms, independently of
the powers occurring in the formulae (this calculation uses the notation αj defined
in the previous paragraph):

αj() = ()
(

()()
kj,1−1()

kj,2()()
kj,3()

kj,4−1
)

=: ()Aj ,

αj() = ()
(

()()
kj,1()

kj,2−1()
kj,3()()

kj,4−1
)

=: ()Bj ,

αj() = ()
(

()
kj,1()()

kj,2()
kj,3−1()

kj,4
)

=: ()Cj .

We remark that, independently of j and of the powers occurring, the “pairs” A ·C,
B · A and C · B are in normal form. On the one hand, if r ≡ 1 or r ≡ 2 (mod 3),
then this shows that for every u with u ≺ ∂(()) we have u ⊀ yu, and in particular
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yu /∈ SSS(x). On the other hand, if m ≡ 0 (mod 3), then this shows that the three
braids

y() =

 m
3∏
j=1

α3j−2α3j−1α3j

()

=

m
3∏
j=1

C3j−2B3j−1A3j ,

y() =

m
3∏
j=1

B3j−2A3j−1C3j and y() =

m
3∏
j=1

A3j−2C3j−1B3j

are rigid. �

We suppose from now on that r ≡ 0 (mod 3) (this is always satisfied up to replac-
ing x by x3). Let u be a minimal useful arrow for y (so implicitly we suppose that
SC(x) is not reduced to the single orbit Oy). It follows in particular from our proof
of Lemma 5.7 that we can always find, up to cyclic permutation of the factors, an
element z of Oyu of the form

z =

m
3∏
j=1

C3j−2B3j−1A3j ,

by making an appropriate choice of indices and powers inside the factors.

We can then rewrite y in the form

y =

m
3∏

ν=1

()
aν ()

bν ()
cν ()

dν ()
eν ()

fν ()
gν ()

hν ()
iν ()

jν ()
kν ()

lν ,

with strictly positive integers aν , bν , . . . , lν for all ν = 1, . . . , m3 , and then z becomes

z =

m
3∏

ν=1

[
()
aν ()()

bν ()
cν−1()

dν ()()
eν ()

fν−1()
gν ()()

hν ()
iν−1

()
jν ()()

kν ()
lν−1

]
.

Lemma 5.8. If the normal form of z contains a factor () or (), then z admits a

unique minimal useful arrow, i.e. the vertex Oz of the graph S̃CG(x) is a leaf.

Proof. Up to cycling or conjugating by δ we can suppose that the last factor of z
is (), and that lm

3
> 1. There are at most two minimal arrows for z, namely ()

and (). A calculation of the normal form of z() shows that () ⊀ z(), which implies
that z() /∈ SSS(x), and hence the lemma.

In order to perform this calculation, we make three observations. Firstly,

()
lν−1() = ()()()

lν−2.

Secondly, for arbitrary integers a, b > 0,(
()
a
()()

b
)

() = ()
(

()
a
()()()

b−1
)

and the first factor on the right hand side is independent of the powers a and b.
Thirdly, the pair ()() is in normal form. Now the previous calculation can be pushed
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towards the left along the normal form of z, getting twisted by a conjugation by ∆
at each step, until it hits, possibly, a factor () or (), where it gets stuck.

This shows that the multiplication of z by () on the right can only modify the

beginning of the normal form of z if ()
lm

3
−1

is the only occurrence of () or () in z.
Moreover, if this is the case, then the initial factor of z() is () and () is not a prefix of
the latter. On the other hand, by our hypothesis that Oz is distinct from Oy, there
is a minimal arrow from z to some element of Oy. This completes the proof. �

Lemma 5.9. Suppose that the normal form of z does not contain any factor ()
or (). Then

(i) the three strict prefixes of ∂(ϕ(z)) are minimal arrows for z,
(ii) if v is a minimal useful arrow for z conjugating z to another rigid braid

whose normal form contains no factor () or (), then zv ∈ Oy and v = ().

Proof. According to our hypothesis, we can further rewrite the formulae from the
proof of Lemma 5.7:

y =

m
3∏

ν=1

()
aν ()

bν ()()
dν ()

eν ()()
gν ()

hν ()()
jν ()

kν ()

and

z =

m
3∏

ν=1

()
aν ()()

bν ()
dν ()()

eν ()
gν ()()

hν ()
jν ()()

kν .

(i) According to Lemma 5.7, z admits three minimal (not necessarily useful) arrows.

(ii) Let v be a minimal useful arrow for z such that zv contains no factor () or ().
First at least one such an arrow exists, because of our hypothesis that Oy 6= Oz. We
know that v ∈ {(), (), ()}. Thus it is sufficient to prove that v 6= () and v 6= (). We
are going to apply the formulae from the proof of Lemma 5.7, now with z playing
the rôle previously played by y.

If v = (), then the formulae from the proof of Lemma 5.7, together with the
restriction that zv contains neither () nor (), imply the equalities bν = eν = hν =
kν = 1. But then z = z(), contradicting the usefulness of v. Thus v 6= ().

Analogously, if v = (), then due to the formulae from the proof of Lemma 5.7 we
obtain aν = dν = gν = jν = 1. But then

z =

m
3∏

ν=1

()()()
bν ()()()

eν ()()()
hν ()()()

kν

and

z() =

m
3∏

ν=1

()()()()
bν ()()()

eν ()()()
hν ()()()

knu−1.

We obtain c(z()) = τ(z), contradicting the usefulness of v. Thus v 6= (). �

Lemma 5.9 shows that the graph S̃CG(x) cannot contain a chain of 3 vertices whose
elements contain no factor () or (). By Lemma 5.8 any vertex which does contain
at least one factor () or (), but which is adjacent to a vertex which doesn’t, is a leaf.
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Since the graph S̃CG(x) is connected and all vertices have degree at most 3, this
implies that it has at most 6 vertices. This completes the proof of Proposition 5.3.

5.3. All elements of SC(x) have at least one factor not belonging to E. In
this subsection we suppose that all elements of SC(x) have at least one factor in

their normal form equal to () ou (). According to Lemma 5.2, the graph S̃CG(x)
is then a (possibly closed) line. In order to prove Theorem 1.2, we need to bound
the length of this line. This task seems much more difficult than in the previous
subsections and we have currently no elementary proof of Theorem 1.2 under the
above hypotheses. In order to illustrate the difficulty, we show first that the qua-
dratic bound of Theorem 1.2 is optimal. The following example was obtained with
the help of the program GAP [25]:

Example 5.10. For all k ∈ N, the braid βk = ()()()()()()
3k

()
−3k

, whose normal
form is

βk = ()()()()() [()()()]
k

is rigid and pseudo-Anosov with `(βk) = 3k + 5. Moreover, the graph S̃CG(βk) is
a line with 3k + 2 vertices. (Explicitly, in order to obtain braids representing all

vertices of S̃CG(βk), it suffices to conjugate βk by ()
j
, for j = 0, . . . , 3k+ 1.) Thus

#SC(βk) = 4 · (3k + 2) · (3k + 5).

Our proof of Theorem 1.2 under the hypotheses of this subsection resorts to Masur-
Minsky’s linear bound on the length of an element conjugating two pseudo-Anosov
elements of a mapping class group ([24], Theorem 7.2).

We consider the length function |.| on B4 induced by taking as generators of B4 the
set of divisors of δ, i.e. the set of BKL-simple braids (see Remark 2.3). The result
of Masur and Minsky, applied to the case of 4-strand braids, then reads:

Theorem 5.11 ([8], Proposition 7). There exists a constant c such that for every
pair (z1, z2) of conjugate pseudo-Anosov 4-strand braids, there exists a conjugating
element w (i.e. zw1 = z2) such that |w| 6 c · (|z1|+ |z2|).

We remark that the length function used in the statement of ([8], Proposition 7) is
the length associated to the alphabet of divisors of ∆, i.e. the set of simple braids
in the classical Garside structure. However, the length functions associated to
different finite generating sets in a group are in bi-Lipschitz correspondence. More
explicitely, our two length functions on B4 are related, with the obvious notations,
by the formula:

|x|BKL4 6 2 · |x|classical 6 6 · |x|BKL4 .

In order to complete the proof of Theorem 1.2, it is now sufficient to prove the
following result (where the constant c is the one promised by Theorem 5.11).

Proposition 5.12. Let x ∈ BKL4 be a rigid pseudo-Anosov braid. Suppose that
all elements of SC(x) have at least one factor of their normal form equal to () or ().

Then the graph S̃CG(x) has at most 16·c·`(x) vertices. Thus, #SC(x) 6 64·c·`(x)2.

Proof. First we can suppose that |x| 6 2 · `(x). In order to see this, we notice that
multiplying x by any power m of the central element δ4 induces an isomorphism
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between the graphs S̃CG(x) and S̃CG(δ4mx). In this way, we can suppose that
inf(x) ∈ {−3,−2,−1, 0}. Then from Remark 2.3 we obtain |x| 6 2 · `(x) (recalling
that `(x) > 2, since x is pseudo-Anosov).

According to Lemma 5.2, every vertex of the graph S̃CG(x) has degree at most 2,
so topologically the graph is either a compact line segment or a circle. We claim

that any two distinct vertices Oa, Ob in the graph S̃CG(x) can be connected in the
graph by a path of length at most 8 · c · `(x). Before proving this claim, we observe
that the claim, together with Lemma 4.6 (iv), implies Proposition 5.12 (the factor 2
comes from the possibility that the graph might form a circle).

So let Oa and Ob be two distinct vertices of S̃CG(x), and let za and zb be represen-
tatives of these two orbits. Due to Theorem 5.11, there exists a braid w satisfying
zwa = bb, and such that |w| 6 2 · c · |x| 6 4 · c · `(x). Up to changing the representa-
tive za we can suppose that inf(w) = 0. Then λ(w) 6 2 · |w|, as every factor of the
normal form of w contributes at most 2 to the weight of w. Thus w is the product
of at most 2 · |w| minimal arrows, which yields a path of length at most 2 · |w|
between Oa and Ob in the graph S̃CG(x). �

Question 5.13. Open question 2 in [2] concerns the existence of a polynomial
bound in n and ` on the size of the set of Sliding Circuits of a rigid (pseudo-
Anosov) braid with n strands and of canonical length at most `. Prasolov gave
a negative answer, by exhibiting a family of rigid pseudo-Anosov braids for which
the size of the sets of Sliding Circuits grows exponentially as a function of n (for
both structures, dual and classical). On the other hand, if we fix n then no such
counter-example is known, and indeed in the special case n = 4 our Theorem 1.2
gives an affirmative answer. So we formulate the following question: for any fixed
integer n, does there exist a polynomial Pn such that the cardinality of the (classical
or dual) set of Sliding Circuits of a rigid pseudo-Anosov braid with n strands is
bounded above by Pn(`(x))?

Question 5.14. Is the size of the (classical or dual) Super Summit Set of a rigid
pseudo-Anosov 4-braid x bounded above by P (`(x)), for some polynomial P? We
know from [10] that for braids with five or more strands, the size of the classical
Super Summit Set can increase exponentially with the length of the braid.

References

[1] J. Birman, Braids, Links and Mapping Class Groups, Annals of Math. Studies 82, (1974).

[2] J. Birman,V. Gebhardt, J. González-Meneses, Conjugacy in Garside Groups I: Cycling, Pow-
ers and Rigidity, Groups Geom. Dyn. 1 (2007), no. 3, 221-279.
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66-67, SMF 1991/1979.

[17] F. Garside, The braid groups and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969),
235-254.

[18] V. Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292

(2005), no. 1, 282-302.
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35042 Rennes Cedex, France

E-mail address: calvez.matthieu@gmail.com, bertold.wiest@univ-rennes1.fr


