Conjugacy stability of parabolic subgroups of Artin-Tits groups of spherical type GAGTA 2018, Seoul

Matthieu Calvez¹ (Universidad de La Frontera, Temuco, Chile)

Joint with María Cumplido (Sevilla, Rennes 1)

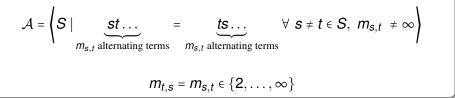
Bruno Cisneros (Universidad Nacional Autónoma de México, Oaxaca)

July 2018

¹ Supported by Fondecyt regular 1180335 and PIA Anillo ACT1415		<	୬୯୯
M. Calvez	Conjugacy stability of parabolics	July 2018	1 / 18

Artin-Tits groups, S finite

Artin-Tits group



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Artin-Tits groups, S finite

Artin-Tits group

$$\mathcal{A} = \left\langle S \mid \underbrace{st \dots}_{m_{s,t} \text{ alternating terms}} = \underbrace{ts \dots}_{m_{s,t} \text{ alternating terms}} \forall s \neq t \in S, m_{s,t} \neq \infty \right\rangle$$

$$m_{t,s} = m_{s,t} \in \{2,\ldots,\infty\}$$

Quotient by $\langle \langle s^2, s \in S \rangle \rangle$:

Coxeter group

$$W = \left(S \mid \underbrace{st \dots}_{m_{s,t} \text{ alternating terms}} = \underbrace{ts \dots}_{m_{s,t} \text{ alternating terms}} \forall s \neq t \in S, m_{s,t} \neq \infty \right)$$
$$S^{2} = 1 \quad \forall s \in S$$

$$\mathcal{B}_n = \left(\sigma_1, \ldots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \ge 2 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j & \text{if } |i-j| = 1 \end{array} \right).$$

э July 2018 3/18

DQC

∃ > э

$$\mathcal{B}_{n} = \left(\sigma_{1}, \dots, \sigma_{n-1} \mid \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{if } |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{if } |i-j| = 1 \end{array}\right).$$
$$m_{\sigma_{i},\sigma_{j}} = \begin{cases} 2 & \text{if } |i-j| \ge 2\\ 3 & \text{if } |i-j| = 1 \end{cases}$$

э July 2018 3/18

DQC

∃ > э

$$\mathcal{B}_{n} = \left\{ \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{if } |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{if } |i-j| = 1 \end{array} \right\}.$$
$$m_{\sigma_{i},\sigma_{j}} = \begin{cases} 2 & \text{if } |i-j| \ge 2\\ 3 & \text{if } |i-j| = 1 \end{cases}$$
$$\mathfrak{S}_{n} = \left\{ \sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{if } |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{if } |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{if } |i-j| \ge 1\\ \sigma_{i}^{2} = 1, & \forall i \in \{1, \dots, n-1\} \end{cases}$$

э July 2018 3/18

DQC

$$\mathcal{B}_{n} = \left(\sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{if } |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{if } |i-j| = 1 \end{array} \right).$$

$$m_{\sigma_{i},\sigma_{j}} = \begin{cases} 2 & \text{if } |i-j| \ge 2\\ 3 & \text{if } |i-j| = 1 \end{cases}$$

$$\mathfrak{S}_{n} = \left(\sigma_{1}, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_{i}\sigma_{j} = \sigma_{j}\sigma_{i} & \text{if } |i-j| \ge 2\\ \sigma_{i}\sigma_{j}\sigma_{i} = \sigma_{j}\sigma_{i}\sigma_{j} & \text{if } |i-j| \ge 1\\ \sigma_{i}^{2} = 1, & \forall i \in \{1, \dots, n-1\} \end{cases}$$

$$(\sigma_{i} \nleftrightarrow [i, i+1])$$

July 2018 3 / 18

4 A 1

ъ

Coxeter graph Γ_S Vertices : *S*, Labeled edge $s = \frac{m_{s,t}}{t}$ t iff $m_{s,t} \ge 3$. Convention: drop the label if $m_{s,t} = 3$.

ъ

< 同 > < ∃ >

Coxeter graph Γ_S Vertices : *S*, Labeled edge $s - \frac{m_{s,t}}{t}$ iff $m_{s,t} \ge 3$. Convention: drop the label if $m_{s,t} = 3$.

Braid example

$$\sigma_1 \sigma_2 \cdots \sigma_{n-1}$$

< 同 > < ∃ >

```
Coxeter graph \Gamma_S
Vertices : S,
Labeled edge s - \frac{m_{s,t}}{t} iff m_{s,t} \ge 3.
Convention: drop the label if m_{s,t} = 3.
```

Braid example

$$\sigma_1 \sigma_2 \cdots \sigma_{n-1}$$

Connected Coxeter graph <>> irreducible Artin-Tits/ Coxeter group.

Calvez	

< /₽ ► < Ξ ►

Parabolic subgroups

Standard parabolic subgroup

Subgroup of A (or W) generated by a subset T of S.

< 同 > < ∃ >

Standard parabolic subgroup

Subgroup of A (or W) generated by a subset T of S.

Parabolic subgroup

Subgroup of A (or W) conjugated to a standard parabolic subgroup.

< 🗇 🕨 < 🖃 >

Standard parabolic subgroup

Subgroup of A (or W) generated by a subset T of S.

Parabolic subgroup

Subgroup of A (or W) conjugated to a standard parabolic subgroup.

Van der Lek's theorem

For $T \subset S$,

- (T)_A = A_T is the Artin-Tits group associated to the subgraph Γ_T of Γ_S generated by vertices of T.
- $\langle T \rangle_W = W_T$ is the associated Coxeter group.

Spherical type

 \mathcal{A} of *spherical type* if *W* is finite.

DQC

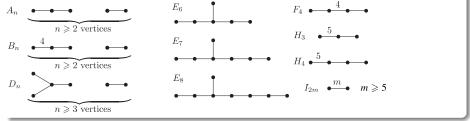
イロト イヨト イヨト イヨト

Spherical type

 \mathcal{A} of spherical type if W is finite.

Theorem (Coxeter, 1935)

Every irreducible Artin-Tits group of spherical type is one of the following list.

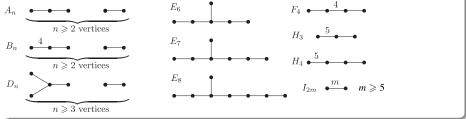


Spherical type

 \mathcal{A} of *spherical type* if W is finite.

Theorem (Coxeter, 1935)

Every irreducible Artin-Tits group of spherical type is one of the following list.



All of these are Garside groups.

M. Calvez	

July 2018 6 / 18

Question

Definition

H < G is *conjugacy stable* if for all $a, b \in H$, the equation $x^{-1}axb = 1$ has a solution in *G* iff it has a solution in *H*.

Question

Definition

H < G is *conjugacy stable* if for all $a, b \in H$, the equation $x^{-1}axb = 1$ has a solution in *G* iff it has a solution in *H*.

Question (Ivan Marin)

Are standard parabolic subgroups of Artin-Tits groups of spherical type conjugacy stable?

Question

Definition

H < G is *conjugacy stable* if for all $a, b \in H$, the equation $x^{-1}axb = 1$ has a solution in *G* iff it has a solution in *H*.

Question (Ivan Marin)

Are standard parabolic subgroups of Artin-Tits groups of spherical type conjugacy stable?

Theorem (González-Meneses, 2014)

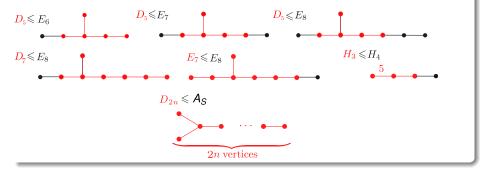
Irreducible standard parabolic subgroups of Artin braid groups are conjugacy stable.

< = > < = > < = >

Main result, first part

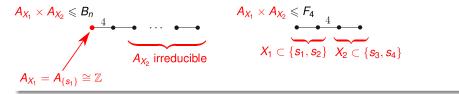
 $A_X \subset A_S$, A_S irreducible spherical type, A_X irreducible.

Theorem (C., Cisneros, Cumplido 2018) A_X is conjugacy stable except for:



Main result, second part

 $A_X \subset A_S$, A_S irreducible spherical type, A_X reducible. Theorem (C., Cisneros, Cumplido 2018) A_X is NOT conjugacy stable except for:



Key-observation. $s, t \in S$ are conjugate in A_X iff s and t are connected by an odd-labeled path in the Coxeter graph.

Sufficient condition on Coxeter groups:

DQC

< ロ > < 回 > < 回 > < 回 >

Sufficient condition on Coxeter groups:

Proposition

If $W_X \leq W_S$ has Property \star_W , then $A_X \leq A_S$ is conjugacy stable.

< ∃ >

Sufficient condition on Coxeter groups:

Proposition

If $W_X \leq W_S$ has Property \star_W , then $A_X \leq A_S$ is conjugacy stable.

 $W_X \leq W_S$ has <u>Property \star_W </u> if $\forall Y_1, Y_2 \subset X$, $Y_1 \xrightarrow{w \in W_S} Y_2$ implies

there is
$$\overline{w}$$
: $Y_1 \xrightarrow{\overline{w} \in W_X} Y_2$ and $\overline{w}^{-1} y \overline{w} = w^{-1} y w$, for all $y \in Y_1$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Sufficient condition on Coxeter groups:

Proposition

If $W_X \leq W_S$ has Property $*_W$, then $A_X \leq A_S$ is conjugacy stable.

 $W_X \leq W_S$ has *Property* \star_W if

 $\forall Y_1, Y_2 \subset X,$

$$Y_1 \xrightarrow{W \in W_S} Y_2$$

implies

there is \overline{w} : $Y_1 \xrightarrow{\overline{w} \in W_X} Y_2$ and $\overline{w}^{-1} y \overline{w} = w^{-1} y w$, for all $y \in Y_1$.

Case-checking of \star_W in finite Coxeter groups –see Geck-Pfeiffer's "Characters of finite Coxeter groups and Iwahori-Hecke algebras".

M. Calvez

Conjugacy stability of parabolics

July 2018 11 / 18

Sac

Technical lemma

Lemma

 $W_X \leq W_S$ has \star_W iff $A_X \leq A_S$ has \star_A .

DQC

Lemma

 $W_X \leq W_S$ has \star_W iff $A_X \leq A_S$ has \star_A .

 $A_X \leq A_S$ has Property \star_A if $\forall Y_1, Y_2 \subset X,$ $Y_1 \xrightarrow{g \in A_S} Y_2$ implies

there is
$$\overline{g}$$
: $Y_1 \xrightarrow{\overline{g} \in A_X} Y_2$ and $\overline{g}^{-1}y\overline{g} = g^{-1}yg$, for all $y \in Y_1$.

5900

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

If $A_X \leq A_S$ has $*_A$, then A_X is conjugacy stable in A_S .

DQC

• • • • • • • •

< ∃ >

Previous

Theorem (Cumplido, Gebhardt, Gonzélez-Meneses, Wiest 2018) For $a \in A_S$, there exists P_a , the parabolic closure of a: minimal parabolic subgroup (w.r.t. inclusion) which contains a. For $g \in A_S$, $P_{g^{-1}ag} = g^{-1}P_ag$.

/⊒ ▶ ∢ ∃ ▶

Previous

Theorem (Cumplido, Gebhardt, Gonzélez-Meneses, Wiest 2018) For $a \in A_S$, there exists P_a , the parabolic closure of a: minimal parabolic subgroup (w.r.t. inclusion) which contains a. For $g \in A_S$, $P_{g^{-1}ag} = g^{-1}P_ag$.

Theorem (Cumplido 2017)

If $P \leq A_X \leq A_S$ is a parabolic subgroup, then there is $s_P \in A_X$: Standardizer and $Y \subset X$ such that $P \xrightarrow{s_P} A_Y$.

Previous

Theorem (Cumplido, Gebhardt, Gonzélez-Meneses, Wiest 2018) For $a \in A_S$, there exists P_a , the parabolic closure of a: minimal parabolic subgroup (w.r.t. inclusion) which contains a. For $g \in A_S$, $P_{g^{-1}ag} = g^{-1}P_ag$.

Theorem (Cumplido 2017)

If $P \leq A_X \leq A_S$ is a parabolic subgroup, then there is $s_P \in A_X$: Standardizer and $Y \subset X$ such that $P \xrightarrow{s_P} A_Y$.

Theorem (Godelle 2003)

$$A_{Y_1} \xrightarrow{g \in A_S} A_{Y_2}$$

 \implies $g = \rho \cdot \tau$, with $Y_1 \xrightarrow{\rho \in A_S} Y_2$ and $\tau \in A_{Y_2}$.

Let $a, b \in A_X$ conjugated by $c \in A_S$.

DQC

Let $a, b \in A_X$ conjugated by $c \in A_S$.

Pa

DQC

< ∃→

Let $a, b \in A_X$ conjugated by $c \in A_S$.

Pa

 P_b

DQC

→ ∃ →

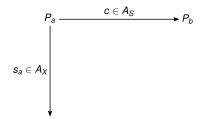
Let $a, b \in A_X$ conjugated by $c \in A_S$.

$$P_a \xrightarrow{c \in A_S} P_b$$

DQC

 $\exists \rightarrow$

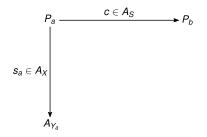
Let $a, b \in A_X$ conjugated by $c \in A_S$.



DQC

< ⊒ >

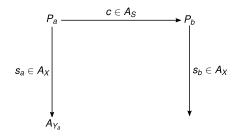
Let $a, b \in A_X$ conjugated by $c \in A_S$.



DQC

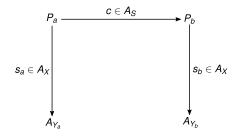
4 6 1 1 4 < ∃ >

Let $a, b \in A_X$ conjugated by $c \in A_S$.



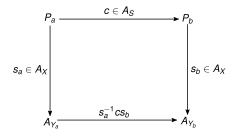
э July 2018 15/18

Let $a, b \in A_X$ conjugated by $c \in A_S$.



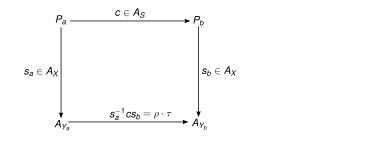
э July 2018 15/18

Let $a, b \in A_X$ conjugated by $c \in A_S$.



July 2018 15 / 18

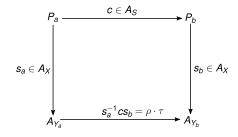
Let $a, b \in A_X$ conjugated by $c \in A_S$.



By 3,
$$A_{Y_a} \xrightarrow{s_a^{-1} cs_b \in A_S} A_{Y_b} \Longrightarrow s_a^{-1} cs_b = \rho \tau$$
: $Y_a \xrightarrow{\rho \in A_S} Y_b$; $\tau \in A_{Y_b} \subset A_X$.

July 2018 15 / 18

Let $a, b \in A_X$ conjugated by $c \in A_S$.

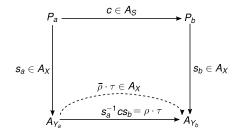


By 3,
$$A_{Y_a} \xrightarrow{s_a^{-1}cs_b \in A_S} A_{Y_b} \Longrightarrow s_a^{-1}cs_b = \rho\tau$$
: $Y_a \xrightarrow{\rho \in A_S} Y_b$; $\tau \in A_{Y_b} \subset A_X$.
By \star_A , we find $\overline{\rho} \in A_X$: $\overline{\rho}^{-1}y\overline{\rho} = \rho^{-1}y\rho$, for all $y \in Y_a$.

э

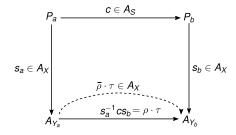
DQC

Let $a, b \in A_X$ conjugated by $c \in A_S$.



By 3,
$$A_{Y_a} \xrightarrow{s_a^{-1} cs_b \in A_S} A_{Y_b} \Longrightarrow s_a^{-1} cs_b = \rho \tau$$
: $Y_a \xrightarrow{\rho \in A_S} Y_b$; $\tau \in A_{Y_b} \subset A_X$.
By \star_A , we find $\overline{\rho} \in A_X$: $\overline{\rho}^{-1} y \overline{\rho} = \rho^{-1} y \rho$, for all $y \in Y_a$.

Let $a, b \in A_X$ conjugated by $c \in A_S$.



By 3,
$$A_{Y_a} \xrightarrow{s_a^{-1}cs_b \in A_S} A_{Y_b} \Longrightarrow s_a^{-1}cs_b = \rho\tau$$
: $Y_a \xrightarrow{\rho \in A_S} Y_b$; $\tau \in A_{Y_b} \subset A_X$.
By \star_A , we find $\overline{\rho} \in A_X$: $\overline{\rho}^{-1}y\overline{\rho} = \rho^{-1}y\rho$, for all $y \in Y_a$.

 $s_a \bar{\rho} \tau s_b^{-1} \in A_X$ conjugates *a* to *b*.

Conjugacy stability of parabolics

3

DQC

< ∃ >

When stability fails?

N/I	Cal	VOT
101.	Uai	162

Conjugacy stability of parabolics

July 2018 16 / 18

2

DQC

Obvious obstruction for stability of A_X in A_S :

 $W_X \leq W_S$ is not conjugacy stable.

DQC

< ∃ >

Cal	

Conjugacy stability of parabolics

2 July 2018 17/18

DQC

 $W(H_3)$ conjugacy stable in $W(H_4)$ but $\mathcal{A}(H_3)$ is not conjugacy stable in $\mathcal{A}(H_4)$.

3 July 2018 17/18

DQC

$$H_3 \leqslant H_4$$
(5) 5 (5) (6)

Conjugacy stability of parabolics

2 July 2018 17/18

DQC

$$H_3 \leqslant H_4$$

$$\overbrace{5}{5} \overbrace{5}{5} \overbrace{5}{5} \overbrace{6}{5}$$

$$\begin{array}{c} W(H_3) \text{ conjugacy stable in } W(H_4) \\ \text{but} \\ \mathcal{A}(H_3) \text{ is not conjugacy stable in } \mathcal{A}(H_4). \\ (5) \underbrace{s_3 s_4 s_3}_{(5)} \underbrace{s_1 s_2 s_1 s_2 s_1}_{(5)} \underbrace{s_2 s_3 s_4 s_2 s_3 s_2}_{(5)} \underbrace{s_3 s_4 s_3}_{(5)} \underbrace{s_3 s_4 s_4 s_4}_{(5)} \underbrace{s_3 s_4 s_4}_{(5)} \underbrace{s_3 s_4 s_4}_{(5)} \underbrace{s_4 s_4}_{(5)} \underbrace{s_4 s_4 s_4}_{(5)} \underbrace{s_4 s_4}_{(5)} \underbrace{s_4$$

conjugated in $\mathcal{A}(H_4)$ but not in $\mathcal{A}(H_3)$.

э July 2018 17/18

DQC

감사합니다

Conjugacy stability of parabolics

2 July 2018 18/18

990