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Abstract We present a simple construction which associates to every Garside
group a metric space, called the additional length graph, on which the group
acts. These spaces share important features with curve graphs: they are δ-
hyperbolic, infinite, and typically locally infinite graphs. We conjecture that,
apart from obvious counterexamples, additional length graphs have always
infinite diameter. We prove this conjecture for the classical example of braid
groups (Bn, B

+
n , ∆); moreover, in this framework, reducible and periodic braids

act elliptically, and at least some pseudo-Anosov braids act loxodromically. We
conjecture that for Bn, the additional length graph is actually quasi-isometric
to the curve graph of the n times punctured disk.

Keywords Garside groups · Braid groups · Curve complexes · Gromov-
hyperbolic

1 Motivation

Let us consider the braid group Bn acting on the left on the curve graph of
the n times punctured disk, which we denote CG. This graph is equipped with
a base point c0, which we take to be a round curve in the disk. There is an
obvious map

Bn −→ CG, x 7→ x.c0

Now, consider the classical Garside structure of the braid group: permuta-
tion braids (or simple braids) are chosen as a preferred set of generators. For
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any element x of Bn, the Garside mixed normal form (as defined in [16]) gives
rise to a path in the Cayley graph, which is actually a geodesic [10]. We shall
look at the image of this geodesic in CG – thus, if x has Garside mixed normal
form x = x1 ·. . .·xl, we consider the path c0, x1.c0, x1x2.c0, . . . , x1 ·. . .·xl.c0 in
the curve graph. Not much is known about this family of paths. For instance,
it is not known whether it forms a uniform family of unparameterized quasi-
geodesics –see the definition in the paragraph before Theorem 1. We conjecture
that this is true, but this is by no means obvious: it is definitely not true that
any quasi-geodesic in Bn projects to an unparameterized quasi-geodesic in
CG [30].

Even if we suppose that this first conjecture is true, i.e. normal form words
in Bn project to quasi-geodesics in CG, another question remains. Indeed, let
us look at a triangle in the Cayley graph of Bn with vertices 1Bn and positive
braids x, y ∈ B+

n , and with edges the mixed normal forms of x, of y, and
of x−1y. Projecting this triangle to the curve graph as above, and assuming
the first conjecture to be true, we must obtain a δ-thin triangle (since the
curve graph is Gromov-hyperbolic [25,22,28]). Now the obvious question is:
how can we characterise, in terms of the three normal forms, the position of
the quasi-center (the point which is close to all three edges)?

There is an obvious conjecture how to answer this question: the quasi-center
should be at (x∧ y).c0, where x∧ y denotes the greatest common divisor of x
and y, in the sense of Garside theory [4]. Moreover, the edges from c0 to x.c0
and from c0 to y.c0 should stay close to each other (and to the path from c0
to (x ∧ y).c0) up to length length(x ∧ y), and diverge afterwards. This is our
second conjecture.

The aim of the present paper is not to prove either of the above two conjec-
tures, but rather to show what happens if we “squash down” the Cayley graph
of Bn in such a way that the second conjecture is forced to hold. It turns out
that the resulting space, which we call the ”additional length graph” CAL, is
δ-hyperbolic, and shares many properties with the curve graph - we conjecture
that the two are actually quasi-isometric.

What is remarkable is that our construction of CAL does not actually men-
tion curves on a surface, and can be carried out analogously for any finite type
Garside structure of a finite type Garside group. Garside groups are a family
of groups with good combinatorial and algorithmic properties, containing e.g.
Artin groups of spherical type [15,13,14]. For a particularly readable introduc-
tion which contains almost all prerequisites for this paper, see [4, Section 1.1].
For the rest of the paper, whenever we talk about a Garside group, we mean
a Garside group of finite type equipped with a specific Garside structure.

Thus any Garside group G acts on a metric space CAL(G). The results of
this paper can be summarized as follows.

Theorem (A) For any Garside groupG, the space CAL(G) is 60-hyperbolic.
Moreover, normal form words in G give rise to uniform unparameterized quasi-
geodesics in CAL.

(B) If G is the braid group Bn, equipped with the classical Garside struc-
ture, then CAL is of infinite diameter. Moreover, periodic and reducible braids
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act elliptically, and there exists a pseudo-Anosov braid which acts loxodromi-
cally.

The plan of the paper is as follows: in Section 2, after recalling a few
basic facts about Garside groups, we construct the additional length graph
and prove that it is δ-hyperbolic. In Section 3 we prove that the additional
length graph associated with the classical Garside structure of the braid group
is moved elliptically by the action of periodic and reducible braids, and that
it is of infinite diameter.

2 The main result

In this section we shall prove that every Garside group G acts on a δ-hyperbolic
graph which we call the additional length graph of G (graphe des longueurs
supplémentaires in French). The key ingredient for proving hyperbolicity is
a “Guessing Geodesics Lemma” of Bowditch [5]. The definition of the graph
rests on the technical notion of absorbable element ; we start with the definition
and first properties of those.

2.1 Absorbable elements

In what follows, (G,P,∆) is a Garside group with positive monoid P , Garside
element ∆, and τ denotes the inner automorphism of G given by τ(x) =
∆−1x∆. In particular P is atomic, i.e. it is generated by the set of elements
a ∈ P such that the relation a = uv with u, v ∈ P implies u = 1 or v = 1;
these elements are called atoms. We assume the reader to be familiar with the
prefix and suffix orders 4 and <, the left/right-weightedness, the left/right gcd
(∧/∧� ) and lcm (∨/∨� ) and the left/right normal form – see e.g. [4, Section
1.1]. We recall that to each element x ofG are associated three relative integers:
its infimum inf(x) = max{r ∈ Z, ∆r 4 x}, its supremum sup(x) = min{s ∈
Z, x 4 ∆r} and its canonical length `(x) = sup(x)− inf(x). These are related
to the left normal form as follows: if x has left normal form x = ∆px1 . . . xr,
p, p+ r and r are the infimum, the supremum and the canonical length of x,
respectively.

We also recall the notion of rigidity: an element x ofG with left normal form
x = ∆px1 . . . xr is said to be rigid if the pair (xr, τ

−p(x1)) is left-weighted;
roughly speaking, this means that the left normal form written cyclically is
left-weighted everywhere. Also, we recall that to each simple element s of G
(that is, s is a positive left and right divisor of ∆), is associated its right
complement : ∂s = s−1∆, which is also a simple element. We extend this notion
of right complement to each element y of G with infimum 0: ∂y = y−1∆sup(y).
In terms of the left normal form, if y = y1 . . . yr, then the normal form of ∂y
is y′r . . . y

′
1 where y′i = τ r−i(∂yi), for i = 1, . . . , r.
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The following formulae will be helpful and are well-known, see [12]. For
any x, y ∈ G, p ∈ Z,

inf(∆px) = p+ inf(x), sup(∆px) = p+ sup(x).

inf(xy) > inf(x) + inf(y), sup(xy) 6 sup(x) + sup(y).

inf(y−1) = − sup(y), sup(y−1) = − inf(y).

Definition 1 We say that an element y of G is absorbable if two conditions
are satisfied:

– inf(y) = 0 or sup(y) = 0,
– there exists some x ∈ G such that{

inf(xy) = inf(x) and

sup(xy) = sup(x).

In this case we also say more precisely that y is absorbable by x or that x
absorbs y.

Remark 1 Definition 1 is very practical for our purposes, but it might not be
the most suitable one for generalizing our techniques to other frameworks. We
suggest another possible definition: say an element y of G is absorbable ′ if there
exists an x ∈ G such that for every initial segment y(i) = y1 . . . yi of the mixed
normal form y = y1 . . . yl we have:

inf(xy(i)) = inf(x) and sup(xy(i)) = sup(x).

(Note that we dropped the requirement that inf(y) = 0 or sup(y) = 0.) This
alternative definition is not quite equivalent to Definition 1, but almost: every
absorbable element is also absorbable′, and conversely, every absorbable′ ele-
ment is the product of at most two absorbable elements, namely the positive
and the negative parts of its mixed normal form.

The following are immediate consequences of Definition 1:

Lemma 1 Let y be an element of G.

(i) If y is absorbable then there exist k ∈ N and y1, . . . , yk simple elements so
that the left normal form of y is y1 . . . yk or ∆−ky1 . . . yk.

(ii) y is absorbable if and only if y−1 is absorbable. This is also equivalent to
τ(y) and τ(y−1) being absorbable.

Proof (i) This is just a rewriting of the condition that inf(y) = 0 or sup(y) = 0
from Definition 1.

(ii) Because inf(y−1) = − sup(y) and sup(y−1) = − inf(y), the first con-
dition for absorbability is satisfied by both y and y−1 or none. Moreover, if
y is absorbable by x, then inf(xy) = inf(x) = inf((xy)y−1) and sup(xy) =
sup(x) = sup((xy)y−1). This shows that y−1 is also absorbable, by xy. For
later reference, we make the additional observation that x and xy, which ab-
sorb y and y−1, respectively, have the same sup and the same inf.

For the rest of statement (ii), just note that y is absorbable by x if and
only if τ(y) is absorbable by τ(x).
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We shall see in Example 1(5) that the complement ∂y of an absorbable
element y is not necessarily absorbable.

The following observation indicates that being absorbable may be a fairly
rare property.

Lemma 2 Any positive subword of a positive absorbable element is absorbable.
That is, suppose that a positive absorbable element y of G can be written as
a product of three positive elements y = uvw (with possibly u = 1 or w = 1).
Then v is absorbable.

Proof First notice that inf(v) = 0. Let x be such that inf(xy) = inf(x) and
sup(xy) = sup(x). Then we claim that inf((xu)v) = inf(xu) and sup((xu)v) =
sup(xu), implying that v is absorbable. In order to prove the claim, we recall
the inequalities inf(a) 6 inf(ab) and sup(a) 6 sup(ab) for any a, b ∈ G with b
positive. They imply

inf(x) 6 inf(xu) 6 inf(xuv) 6 inf(xuvw) = inf(x),

sup(x) 6 sup(xu) 6 sup(xuv) 6 sup(xuvw) = sup(x).

Lemma 3 Let y be an absorbable element with canonical length k. Then there
exists x with infimum 0 and supremum k which absorbs y. Moreover k is the
smallest possible number of factors in an element with infimum 0 absorbing y.

Before giving the proof, we mention that Lemma 3 yields, in principle,
an algorithm for testing whether any given element y of G is absorbable. It
suffices to test, for every x ∈ G with inf(x) = 0 and sup(x) = `(y), whether
x absorbs y. We do not know if there exists a polynomial-time algorithm for
testing absorbability.

Proof (Proof of Lemma 3) If k = 0 there is nothing to prove. Let y be ab-
sorbable by x̂ = ∆px, with inf(x) = 0; then inf(xy) = inf(x̂y)−p = inf(x̂)−p =
inf(x) and similarly for the supremum, showing that y is absorbable by x.

Thus y is absorbed by an element x with inf(x) = 0. We have to show that
we can take x with the same length k as y, and that this k is minimal. We
can restrict our attention to the case where y is positive, i.e. inf(y) = 0; this
is because y and y−1 can be absorbed by elements of the same length, as seen
in the proof of Lemma 1.

From now on we assume that y is positive and y = y1 . . . yk is its left
normal form. The absorbing element x with inf(x) = 0 is at least of length k,
because sup(x) = sup(xy) > sup(y) = k. We have to prove the existence of
such an x with length exactly k. More precisely, if x = x1 . . . xl xl+1 . . . xl+k
absorbs y, we will show that so does x̃ = xl+1 . . . xl+k. First, by hypothesis
inf(xy) = inf(x) = 0, so

0 = inf(x̃) 6 inf(x̃y) 6 inf(xy) = inf(x) = 0

and the condition on the infima is satisfied. It remains to be shown that for
all i = 1, . . . , k the left normal form of x̃y1 . . . yi has only k letters.
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This is based on the following two observations. Firstly, if z1 . . . zr is a
left normal form with z1 6= ∆ and if s is a simple element with inf(zs) = 0,
then the left normal form of zs also has r letters if and only if zrs is simple.
Otherwise this left normal form has r + 1 letters. Moroever, in the former
case, if r > 2, for j = 2, . . . , r, the jth letter of the left normal form of zs
is fully determined by s and zj−1, . . . , zr (all the preceding letters of zdo not
enter into consideration); this is our second observation. These two facts follow
by inspection of the procedure for calculating normal forms explained in [17],
Proposition 1.

Since sup(xy1) = sup(x), the first observation tells us that xl+ky1 must
be simple, which in turn implies that sup(x̃y1) = sup(x̃). This terminates
the proof if k = 1. Moreover, if k > 2, the second observation implies that
for j = 2, . . . , k, the jth letter of the left normal form of x̃y1 coincides with
the l + jth letter of the left normal form of xy1. Applying again the first
observation together with the absorbability of y in x, hence of y2 in xy1, we
see that sup(x̃y1y2) = k and we are done if k = 2. Moreover (if k > 3), for
j = 3, . . . , k, thanks to the second observation, the jth letter of the normal
form of x̃y1y2 coincides with the l + jth letter of the normal form of xy1y2.
Continuing inductively, we obtain the desired result that sup(x̃y1 . . . yi) = k,
for all i = 1, . . . , k.

Example 1 (1) Whenever n > 3, in the “classical” Garside structure on the free
abelian group (Zn,Nn, (1, 1, . . . , 1)), any multiple of a standard generator
is absorbable.

(2) In the braid group B4 with its classical Garside structure, the braid y =
σ2

1σ
2
2σ

2
3σ

2
2σ1 is absorbable, e.g. by x = σ1σ

4
2σ

2
1σ2σ3: we calculate

σ1σ2 . σ2 . σ2 . σ2σ1 . σ1σ2σ3 · σ1 . σ1σ2 . σ2σ3 . σ3σ2 . σ2σ1 =

= σ1σ2σ1 . σ1σ2σ1σ3 . σ1σ2σ3σ2 . σ2σ3σ2 . σ2σ3σ2σ1

Notice that y is pseudo-Anosov and rigid.
(3) The length 2 braid (σ1σ3)2 in B4 is not absorbable, as shows Lemma 3

together with an inspection of all braids with infimum 0 and supremum
2. Nor is absorbable any 4-braid with infimum 0 and left normal form
x1 . . . xr such that for some i = 1, . . . , r − 1, xi < σ1σ3 and σ1σ3 4 xi+1,
by Lemma 2.

(4) In any Garside group, if s is an atom, then the simple element y = s−1∆ is
not absorbable. Indeed, if y was absorbable then, by Lemma 3, it could be
absorbed by a simple element x 6= 1. We would then have xy ≺ ∆. Since
left divisors of ∆ are also right divisors of ∆, this means that there exists
a simple element a 6= 1 satisfying axy = ∆. By combining this with the
equality sy = ∆, we obtain ax = s, contradicting the hypothesis that s is
an atom.

(5) As an application of the previous example, in the braid group Bn with its
classical Garside structure, the braid σ−1

i ∆, for any i between 1 and n−1,
is not absorbable (even though it is the complement of the absorbable braid
σi).
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2.2 The additional length graph

Definition 2 Suppose G is a Garside group, the group of fractions of a Gar-
side monoid (P,∆). We define the additional length graph CAL(G,P,∆) (gen-
erally abbreviated as CAL(G), or even CAL) to be the following (usually locally
infinite) connected graph.

– The vertices are in correspondence with G/〈∆〉, that is the cosets g∆Z =
{g∆z | z ∈ Z}. For each vertex v we have a unique distinguished represen-
tative with infimum 0, which we denote v.

– Two vertices v = v∆Z and w = w∆Z of CAL are connected by an edge if
one of the following happens:
1. There exists a non-trivial, non-∆ simple element m so that the element
vm represents the coset w. This is equivalent to saying that there is a
simple element m′ 6= 1, ∆ such that wm′ belongs to the coset v. (This
first type of edges is as in Bestvina’s normal form complex, see [11].)

2. There exists an absorbable element y of G so that vy belongs to the
coset w. This is equivalent to saying that there is an absorbable element
y′ of G so that wy′ belongs to the coset v.

As usually, a metric structure on the above graph is given simply by declar-
ing that every edge is of length 1. We call this metric the additional length
metric. The distance between two vertices v and w in CAL will be denoted
dAL(v, w). The group G acts on the left by isometries on this graph.

Remark 2 (a) The idea of this definition is that in the additional length graph,
a group element y is close to the identity if “multiplying by the element y does
not necessarily add any length” – hence the name of the graph.

(b) If, in Definition 2, we leave out the second type of edges, then we obtain
precisely the 1-skeleton of the Bestvina normal form complex as described
in [11]. Thus the additional length graph can be thought of as a squashing of
the Bestvina normal form graph.

(c) As a first easy case, we notice that the additional length graph associ-
ated to the classical Garside structure of a free abelian group Zn (n > 3) has
finite diameter (at most n); this follows from Example 1 (1).

Next we shall associate to each pair of vertices v, w of CAL a preferred path
A(v, w) between v and w:

Definition 3 (See Definition 6.1. in [11]). Let v = v∆Z and w be two vertices
of CAL.

– The preferred path A(1, v) is the connected subgraph of CAL given by the
left normal form of v. That is, if v1 . . . vsup(v) is the left normal form of
v, A(1, v) is the path starting at 1 whose edges are successively labeled
v1, . . . , vsup(v); for i = 0, . . . , sup(v), the distinguished representative of the
ith vertex along A(1, v) is ∆i ∧ v.

– The preferred path A(v, w) from v to w is given by the translation on the
left by v of the preferred path A(1, (v−1w)∆Z). That is, if x = x1 . . . xr
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is the left normal form of the distinguished representative of (v−1w)∆Z,
A(v, w) is the path of length r starting at v whose edges are successively
labeled x1, . . . , xr.

Note that the path A(v, w) uses only the edges of CAL coming from the Cay-
ley graph of G (with respect to the divisors of ∆), not those coming from
absorbable elements, and that the length of the path may well be much larger
than the distance between 1 and v. As normal forms are unique, if two vertices
v and w are connected by a path γ whose edges are labeled by simple elements
s1, . . . , sr satisfying that for i = 1, . . . , r − 1, (si, si+1) is a left-weighted pair,
then γ = A(v, w).

In order to get a more detailed picture of this family of paths, we claim
the following:

Lemma 4 Let v = v∆Z and w = w∆Z be two vertices of CAL. Then A(v, w)
is the concatenation of the paths A(v, (v ∧ w)∆Z) and A((v ∧ w)∆Z, w). I.e.,
the preferred path between v and w passes through the vertex (v ∧ w)∆Z

Proof Set d = v ∧ w. We have positive elements a and b such that v = da,
w = db and a ∧ b = 1. By definition A(v, w) is the left translate by v of
the path A(1, (v−1w)∆Z), which connects the identity vertex with the vertex
represented by v−1w. We shall see that the distinguished representative of the
latter vertex is the element ∂a · τ r(b), where r is the supremum of a. Indeed,
we have

∂a · τ r(b) = a−1∆r · τ r(b) = a−1b∆r = (a−1d−1)(db)∆r = v−1w∆r,

which shows that our element represents the correct vertex. Moreover, if we
write the left normal forms as a = a1 . . . ar and b = b1 . . . bs, we have

∂a · τ r(b) = ∂ar . . . τ
r−1(∂a1) · τ r(b1) . . . τ r(bs),

which is in left normal form as written because, as a ∧ b = 1,

(τ r−1(∂a1), τ r(b1))

is a left-weighted pair. Thus inf(∂a · τ r(b)) = 0 and this shows that ∂a ·
τ r(b) is the desired distinguished representative. This says moreover that
the path A(1, v−1w∆Z) is the concatenation of the paths A(1, ∂a∆Z) and
A(∂a∆Z, ∂aτ r(b)∆Z), that is, of A(1, a−1∆Z) and A(a−1∆Z, v−1w∆Z). After
translation by v, using the equality va−1 = d, we see that our path A(v, w) is
the concatenation of A(v, d∆Z) and A(d∆Z, w), as we wanted to show.

Lemma 5 The preferred paths are symmetric: for any vertices v, w of CAL,
we have A(v, w) = A(w, v).

First, note that the lemma has nothing to do with our strange metric, the
analogue result is also true in Bestvina’s normal form graph – see Lemma 6.4
in [11]).
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Proof As in the proof of Lemma 4, set d = v ∧ w. We have two elements a, b
of G, with inf(a) = inf(b) = 0, v = da, w = db and a ∧ b = 1. Set moreover
r = sup(a) and s = sup(b). By definition, A(v, w) is the left translate by v of
the path A(1, (v−1w)∆Z) and we have seen in the proof of Lemma 4 that the
latter is given by the left normal form of ∂a · τ r(b). Similarly, A(w, v) is the
left translate by w of the normal form of ∂b · τs(a). First we note that both
paths have the same length, namely r+ s. For 0 6 i 6 r+ s, we will show that
v(∆i ∧ ∂a · τ r(b)) represents the same vertex as w(∆r+s−i ∧ ∂b · τs(a)), hence
showing the lemma. In other words, when traveling along the path A(v, w) or
along the path A(w, v), one meets exactly the same vertices of CAL, but in the
reverse order.

First, assume 0 6 i < r. On the one hand,

v(∆i ∧ ∂a · τ r(b)) = da(∆i ∧ ∂a) = da1 . . . ar−i∆
i.

On the other,

w(∆r+s−i ∧ ∂b · τs(a)) = db∂b(∆r−i ∧ τs(a)) = da1 . . . ar−i∆
s.

Next, assume that r < i 6 r + s, that is i = r + j, for 0 < j 6 s. On the
one hand,

v(∆r+j ∧ ∂a · τ r(b)) = da∂a(∆j ∧ τ r(b)) = db1 . . . bj∆
r.

On the other,

w(∆r+s−(r+j) ∧ ∂b · τs(a)) = db(∆s−j ∧ ∂b) = db1 . . . bj∆
s−j .

Finally, if i = r, we have v(∆r ∧ ∂a · τ r(b)) = da∂a = d∆r and w(∆s ∧ ∂b ·
τs(a)) = db∂b = d∆s.

Here is our main result. For definiteness recall that given K > 1 and C > 0,
a path φ : [0, L] −→ CAL is an unparameterized (K,C)-quasi-geodesic if there
is some positive number u and a non-decreasing homeomorphism ρ : [0, u] −→
[0, L] such that for every s, t ∈ [0, u],

1

K
|s− t| − C 6 dAL(φ(ρ(s)), φ(ρ(t))) 6 K|s− t|+ C.

Theorem 1 For any Garside group (G,P,∆), the graph CAL is 60-hyperbolic.
Moreover, the paths A(v, w) with v, w ∈ G/〈∆〉, form a family of unparame-
terized (1, 480)-quasi-geodesics.

Remark 3 Note that the hyperbolicity-constant is bounded independently of (G,P,∆).

Proof (Proof of Theorem 1) First recall Proposition 3.1 in [5]:

Proposition 1 [“Guessing Geodesics Lemma”] Given h > 0, there is some
k > 0 with the following property. Suppose that X is a connected graph and
that for each pair of vertices x, y of X, we have associated a connected subgraph
A(x, y) ⊆ X, with x, y ∈ A(x, y). Suppose that



10 Matthieu Calvez, Bert Wiest

– For all vertices x, y of X connected by an edge, A(x, y) has diameter in X
at most h.

– For all vertices x, y, z of X, A(x, y) is contained in an h-neighborhood of
the union A(x, z) ∪A(y, z).

Then X is k-hyperbolic. Moreover, if m is any positive real number so that
2h(6 + log2(m+ 2)) 6 m, we can take k to be any number with k > 3

2m− 5h.
Moreover, for all vertices x, y of X, the Hausdorff distance between A(x, y)
and any geodesic between x and y is bounded above by m− 4h.

We will show that the hypotheses of Proposition 1 are satisfied with X =
CAL, and h = 2. Then the inequality 2 · 2 · (6 + log2(m+ 2)) 6 m holds for the
positive number m = 46.5. This yields the estimate k = 60 and the fact that,
for every v, w ∈ G/〈∆〉, the path A(v, w) stays at a Hausdorff distance of at
most 39 from any geodesic between v and w.

First we look at the first condition: preferred paths between adjacent ver-
tices have uniformly bounded diameter in CAL.

Lemma 6 Let v, w be two vertices of CAL such that dAL(v, w) = 1. Then the
diameter in CAL of A(v, w) is equal to 1.

Proof We may assume that v = 1. If sup(w) = 1, then there is nothing to
prove: A(1, w) just consists of an edge with two vertices. Otherwise, sup(w) >
1. As there is an edge between 1 and w, there exists an absorbable element
y so that y = w∆k, for some k ∈ Z. By definition of absorbable elements,
this implies either k = 0 (in which case y = w is absorbable and positive),
or k = − sup(w). In the first case, A(1, w) is given by the left normal form
of y = w; by Lemma 2, this has diameter 1 in CAL. In the second case, we
look at the path A(w, 1) which is the translate by w of the path A(1, w−1∆Z).
The latter corresponds to the left normal form of the element ∂w. But y, and
thus y−1, are absorbable; and the equality ∂w = τ−k(y−1) shows that ∂w
is also absorbable. Therefore, again by Lemma 2, the path A(1, w−1∆Z) has
diameter 1 in CAL as we needed to show.

We now proceed to show the second condition: the 2-thinness of any tri-
angle whose edges are our preferred paths.

Lemma 7 Let u, v, w be three vertices of CAL. The triangle in CAL with ver-
tices u, v and w, and with edges A(u, v), A(v, w) and A(u,w) is 2-thin: each
edge is at Hausdorff distance at most 2 from the union of the other two edges.

Proof (Proof of Lemma 7) For the proof, first notice that without loss of
generality we can assume that u = 1. We then set, as in the above proofs,
d = v ∧ w. We consider the elements a, b of G satisfying v = da, w = db and
a ∧ b = 1. We also set k = sup(v), l = sup(w), r = sup(a), s = sup(b) and
p = sup(d).

Lemma 8 The initial segments of length p of A(1, v) and A(1, w) are at Haus-
dorff distance at most 2 in CAL.
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Fig. 1 (a) A triangle with vertices 1, v and w and normal form edges. (b) How the triangle
is squashed in CAL.

Proof First recall that for any integer i = 1, . . . , k, the ith step on the preferred
path A(1, v) is at the vertex (v∧∆i)∆Z, whose distinguished representative is
exactly v ∧∆i. Notice that d itself is the distinguished representative of d∆Z.

It is sufficient to prove that the initial segment of A(1, v) of length p is
at Hausdorff distance at most 1 from A(1, d∆Z) in CAL. Specifically, we claim
that the respective ith steps of A(1, v) and of A(1, d∆Z) are at distance at
most 1 for any i = 1, . . . p, that is

dAL((v ∧∆i)∆Z, (d ∧∆i)∆Z) 6 1.

But now observe that d∧∆i 4 v∧∆i, so that we can find a positive element y
such that (d ∧ ∆i)y = v ∧ ∆i. This element y is absorbable by d ∧ ∆i as
sup(d ∧∆i) = sup(v ∧∆i) = i and inf(d ∧∆i) = inf(v ∧∆i) = 0. This shows
the claim.

Lemma 8 says that in our triangle, the two edges emanating from any ver-
tex have distinguished initial segments (possibly consisting of a single vertex)
which stay at distance at most 2 from each other; moreover, the respective
end points of these initial segments are at distance at most 1 from a common
vertex on the third edge.

We shall now see that for each edge of our triangle, the respective distin-
guished initial segments emanating from its two extremities actually overlap
(or at least share a common vertex on the given edge). This is a consequence
of the following lemma.

Lemma 9 We have sup(∂v ∧ ∂a · τ r(b)) > r.

Proof It suffices to exhibit a common prefix of ∂v and ∂a of length r. Our
candidate is U , which we define to be the product of the r first factors in the
right normal form of ∂v. In other words, we have U = ∂(∆r ∧� v) (where ∧�
denotes the right gcd in G). It is by construction a prefix of ∂v of length r.
It remains to be shown that it is also a prefix of ∂a. But notice that a, as a
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suffix of v of length r, is certainly a suffix of ∆r ∧� v, so that we can find a
positive R satisfying ∆r ∧� v = Ra. But now,

∂a = a−1∆r = (∆r ∧� v)−1R∆r = Uτ r(R).

This shows that U is also a prefix of ∂a.

Along the edge A(1, v), we have on the one hand a distinguished initial
segment emanating from 1 which has length p. On the other hand, Lemma
9 says that the distinguished initial segment emanating from v has length at
least r. Because v = da, the length k of the edge A(1, v) is at most p+r. Hence
the two distinguished initial segments at least meet in a point along A(1, v).

This shows that any point of A(1, v), and hence by symmetry any point
on any edge of our triangle, is at distance at most 2 from some point in the
union of the other two edges.

Lemmas 6 and 7 guarantee that the hypotheses of the Guessing Geodesics
Lemma (Proposition 1) are satisfied. Therefore it only remains to show the
statement on uniform unparameterized quasi-geodesics. To this end, we will
prove the following lemma which appears to be well-known to the experts but,
to the best of our knowledge, has never appeared in the literature.

Lemma 10 Let (X, d) be a geodesic metric graph. Suppose that to any vertices
x, y of X we have assigned an edge-path cxy between them. Suppose that there
exists a number D > 0 such that for any vertices x, y ∈ X,

(i) for any geodesic γ between x and y, the path cxy lies in the D-neighborhood
of γ,

(ii) for any pair of vertices x′, y′ along the path cxy, the path cx′y′ stays in a
D-neighborhood of the portion of cxy contained between x′ and y′.

Then the paths cxy are unparameterized (1, 12D + 12)-quasi-geodesics.

Before proving this claim, we observe that in our context, i.e. the metric graph
(CAL, dAL), both conditions of Lemma 10 are satisfied by the paths A(v, w).
Indeed, by construction, any subpath of a preferred path is itself the preferred
path between its endpoints. Moreover, as we already saw, the last clause of
Proposition 1 implies the first condition of Lemma 10, with D = 39. Therefore
the last claim of Theorem 1 follows from Lemma 10.

Proof (Proof of Lemma 10) Let x, y be fixed vertices of X. Let γ a geodesic
between them. Let r be the length of the path cxy and l = d(x, y). For simplic-
ity we denote c instead of cxy the path under consideration. We will actually
construct a non-decreasing homeomorphism ρ : [0, l] −→ [0, r] such that for
every s ∈ [0, l], d(c(ρ(s)), γ(s)) 6 6D+6. This implies immediately the desired
statement.

For a subset Y of X, ND(Y ) will denote the D-neighborhood of A in X.
Define j0 = 0 and for every k = 1, . . . , l define

jk = max{j ∈ [0, r] ∩ N, c(j) ∈ ND(γ([0, k]))}.
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Observe that the jks are non-decreasing and that jl = r. Furthermore, let

Λ = {k ∈ {1, . . . , l − 1}, jk > jk−1} ∪ {0, l}

and let ν0 = 0, . . . , νm(m > 1) be an increasing enumeration of Λ. In particular,
for i = 1, . . . ,m, we have

jνi−1
= jνi−1+1 = . . . = jνi−1 < jνi . (*)

We start with two basic facts about the νis. Let i ∈ {1, . . . ,m}. Firstly, observe
that c(jνi) belongs to ND(γ]νi − 1, νi]) whence

d(c(jνi), γ(νi)) 6 D + 1. (**)

Secondly, we claim that the difference between νi−1 and νi is no more than
2D+3. To see this, observe that the point c(jνi−1+1) does not lie inND(γ[0, νi−
1]), due to (*); however by hypothesis (i), it lies at a distance of at most D from
some point in γ, so that we can find q ∈]νi−1, l] so that d(c(jνi−1

+1), q) 6 D.
Since γ is geodesic and using (**), it follows that

|νi−1 − νi| 6 |νi−1 − q|+ 1 = d(γ(νi−1), γ(q)) + 1,

and hence

|νi−1 − νi| 6 d(γ(νi−1), c(jνi−1
) + 1 + d(c(jνi−1

+ 1), γ(q)) 6 2D + 3. (***)

Now, let i ∈ {0, . . . ,m−1}, s ∈ [νi, νi+1] and t ∈ [jνi , jνi+1
]; we seek to estimate

d(γ(s), c(t)). By hypothesis (ii), c(t) lies at a distance of at most D from some
point in cc(jνi ),c(jνi+1

), which by hypothesis (i) lies itself at a distance at mostD

from a point on a geodesic between c(jνi) and c(jνi+1
). But combining (**) and

(***), we see that such a geodesic has length at most 4D + 5 and therefore
d(c(t), c(jνi)) 6 4D + 3 or d(c(t), c(jνi+1

)) 6 4D + 3. Using (**) and (***)
again, we get that d(c(t), γ(s)) 6 4D + 3 + (D + 1) + (D + 2) = 6D + 6.

To conclude, it is sufficient to define the homeomorphism ρ by gluing linear
maps [νi, νi+1] −→ [jνi , jνi+1

] for every i = 0, . . . ,m − 1. This completes the
proof of Lemma 10.

Remark 4 We notice that the constant 480 in the statement concerning the
quasi-geodesics in Theorem 1 is far from optimal. For instance, from the proof
of [21, Proposition 3.5], one can deduce that it is possible to take D = 15
in Lemma 10. Another improvement consists in observing that the second
hypothesis in Lemma 10 is satisfied with D = 0, whence in our particular case,
we get 10D + 12 quasi-geodesics. Combining both observations we obtain the
constant 162 instead of 480.

Open Problems 2 1. What is the boundary at infinity of CAL(G)?
2. One of the most powerful tools for studying mapping class groups are sub-

surface projections in curve graphs [26]. Is there a good analogue notion in
CAL?
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3. Under which conditions on G does CAL(G) have infinite diameter? In The-
orem 3 we shall prove that this is the case if G is the braid group, equipped
with the classical Garside structure; however, the condition that G/Z(G)
is infinite may actually be sufficient. The special case of Artin-Tits groups
of spherical type deserves particular attention.

4. Does G/Z(G) act acylindrically on CAL(G)? Recall that mapping class
groups act acylindrically on curve graphs [6,28].

5. Is it true that “generic” elements of G act loxodromically on CAL, and thus
are analogue to pseudo-Anosov elements in mapping class groups? If the
word “generic” is used in the sense of “a random element in a large ball in
the Cayley graph”, then the answer is positive in the special case of braid
groups with the classical Garside structure – see [9,31]. The question is
closely related to question (3) above. If, by contrast, the word “generic” is
used in the sense of “the result of a long random walk in the Cayley graph”,
then a positive answer would essentially be implied by a positive answer to
question (4) above, using [29].

6. Consider the braid group Bn, equipped with its classical Garside structure.
For n > 4, we conjecture that CAL(Bn) is quasi-isometric to CG(Dn), the
curve graph of the n-times punctured disk. See Section 3.3 for a more de-
tailed account. (This conjecture is the reason why we think of CAL as an
analogue of the curve graph.)

7. If G is a Garside group with two different Garside structures (G,P,∆) and
(G,Q, δ), are the additional length graphs CAL(G,P,∆) and CAL(G,Q, δ)
quasi-isometric? In particular, are the additional length graphs associated
with the classical (respectively, dual) Garside structure of the braid group
Bn quasi-isometric? We conjecture that they are, since both should be quasi-
isometric to CG(Dn).

8. Is the automorphism group of CAL(G) commensurable with G? Recall that
the automorphism group of the curve graph is commensurable with the map-
ping class group, by Ivanov’s theorem [23].

9. Is there a fast algorithm for finding parametrized quasi-geodesics, or even
geodesics, between any two given points in CAL? (Note that the Garside
normal form yields a fast algorithm for constructing unparametrized quasi-
geodesics.) To start with, is there a fast algorithm for deciding absorbabil-
ity?

10. Is the construction principle of CAL useful in contexts other than Garside
groups, for instance for general mapping class groups, or for Out(Fn)?

3 The special case of the braid groups

In this section we consider the special case where G = Bn, the braid group on
n strands, equipped with the classical Garside structure (B+

n , ∆). Throughout,
we assume that the reader is familiar with it and its specific vocabulary such
as starting and finishing sets. For an excellent introduction, see [12].
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Example 2 1. For n = 2, B2 is the infinite cyclic group generated by ∆2 = σ1,
so B2/〈∆2〉 as well as the associated additional length graph are trivial.

2. For n = 3, the only absorbable braids are σ1, σ2 and their respective in-
verses. Therefore the additional length graph in that special case is nothing
but the one-skeleton of Bestvina’s normal form complex, which has infinite
diameter.

3.1 Periodic and reducible braids act elliptically

Example 3 In Bn with n > 4, the braid ∆k (with k ∈ Z− {0}) is the product
of three absorbable braids. Indeed, suppose k > 1 and let A = σk1 , B = σk3 ,
and C = A−1B−1∆k. Then ∆k = A · B · C. Moreover, A and B can absorb
each other, and C can be absorbed by A. It follows from Lemma 1(ii) that
A−1, B−1 and C−1 are absorbable. Thus ∆−k = C−1B−1A−1 is the product
of three absorbable braids, hence showing the claim for negative powers, too.

Recall that the braid group acts, on the left, on the set of isotopy classes of
simple closed curves in the n-times punctured disk. In what follows, we shall
take these punctures to be lined up horizontally. Also, by a round curve we
shall mean the isotopy class of a geometric essential circle (i.e. enclosing more
than 1 and less than n punctures).

Lemma 11 Suppose that n > 4. Any n-braid which sends a round curve to
a round curve is a product of at most nine absorbable braids. In particular,
every reducible braid with round reduction curves is a product of at most nine
absorbable braids.

Proof Let y be a braid sending a round curve to a round curve. As in the
computation of a left normal form, we can get rid of the possible negative
factors in y at the cost of at most three absorbable braids (see Example 3).
As powers of ∆ send round curves to round curves we may suppose that y is
a positive braid sending the round curve C to a round curve.

We recall [1,7,18] that in any braid y which sends a round curve C to
a round curve, pushing the curve C along the braid gives rise to a “tube”
that stays round all along the braid y. Thus y can be written as the product
y = yint · ytub of an interior braid yint and a tubular braid ytub: in the interior
braid the tube just goes straight down and only the strands inside the tube
can cross each other. By contrast, the tubular braid ytub looks just like y,
except that all crossings between pairs of strands living in the tube have been
removed. Figure 2 shows an example in B5.

We shall show that each of yint and ytub can be written as a product of
three absorbable braids. We start with some notation. Firstly, we denote by
∆C the simple braid in which two strands cross if and only if they both start
at punctures enclosed by C. Secondly, let i be an integer such that punctures
number i and i+ 1 are enclosed by C.
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In order to prove the claim concerning yint, let us first suppose that C
encloses strictly less than n − 1 punctures, thus at least two punctures are
not enclosed by C. If there is a j such that the punctures j and j + 1 are
not enclosed by C, then yint can be absorbed by an appropriate power of σj
(namely, sup(yint)). Otherwise, only the first and the nth puncture are not
enclosed by C; then there is an appropriate value of p (namely, sup(yint)) so
that

∏p
ι=1 τ

ι(σ1 . . . σn−1) absorbs yint.

Fig. 2 The braid y = σ1σ2σ1σ4σ3σ2σ1 · σ1σ2σ1σ3σ2σ4 · σ4σ3σ2σ2σ1 ∈ B5, the round
curve C sent by y to a round curve and the corresponding braids yint = σ1σ2σ1 · σ1σ2 and
ytub = σ4σ3σ2σ1 · σ1σ2σ3σ4 · σ4σ3σ2σ1; interior strands are depicted in bold lines. In this
example, yint is absorbable by σ2

4 . On the other hand, with i = 1, σ3
i absorbs ytub.

Suppose now that C encloses all the punctures but one. Up to conjugation
by ∆, which preserves absorbability (Lemma 1(ii)), we may assume that the
first puncture is not enclosed by C. We consider the decomposition yint =
∆k
C · y′int, where k is a non-negative integer and y′int is a positive braid not

divisible by ∆C . Then there is an appropriate value of p (namely sup(y′int)) so
that y′int is absorbed by

∏p
ι=1 τ

p−ι(σn−1 . . . σ1). The factor ∆k
C , on the other

hand, can be further decomposed as ∆k
C = σki · (σ

−k
i ∆k

C). Both factors are

absorbable by
∏k
ι=1 τ

k−ι(σn−1 . . . σ1). This completes the proof that yint can
be written as a product of three absorbable braids.

The proof for ytub is similar: the braid ytub can be decomposed into at
most three factors which can all be absorbed by an appropriate power of σi.

Proposition 2 We consider the action of the braid group Bn, equipped with
its classical Garside structure, on its additional length graph CAL(Bn) by left
multiplication. Then periodic and reducible elements act elliptically.

Proof We recall that a braid is called periodic if it has some power which is
also a power of ∆2. Since ∆2 acts trivially on the graph, periodic braids act
as finite-order isometries on the graph: their action is thus elliptic. (Note that
∆ does not act trivially: it sends any vertex x∆Z to τ−1(x)∆Z.)
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If a braid x is reducible with a round reducing curve, then so is any of its
powers. As seen in Lemma 11, the orbit of the trivial braid under the action
of x remains at distance at most 9 from the trivial braid. This means that x
acts elliptically.

In order to deal with the case of braids which are reducible but without
round reduction curves, we remark that such braids are conjugate to reducible
braids with round reduction curves, and therefore they act elliptically, too.

3.2 CAL(Bn) has infinite diameter

Theorem 3 Let Bn be the braid group on n strands (n > 3), equipped with
the classical Garside structure. Then the graph CAL(Bn) has infinite diameter.

Proof For n = 3, this is the statement in Example 2 (2). Our strategy for prov-
ing Theorem 3 is to actually construct elements whose action on the additional
length graph is loxodromic. For every braid index n > 4, we will construct a
special braid xn of infimum 0 such that the vertex xNn ∆

Z (N ∈ N) is at a dis-
tance at least N

2 from the identity vertex of CAL. (As an aside, we conjecture
that the action of xn on CAL(Bn) is weakly properly discontinuous, [3,28].)

Here is the construction of our special braids xn.

Proposition 3 For each n > 4, there is a positive n-strand braid xn of infi-
mum 0 with the following properties:

1. The left and right normal forms of xn are the same,
2. The first factor sfirst and the last factor slast of the left and right normal

form of xn are the same and consist of a single atom. In particular the pair
(slast, sfirst) is both right and left-weighted.

3. The left (and right) normal form of xn contains a factor which is the
complement of an atom.

Proof The rough idea leading to the present construction is that xn should
contain something like the ”blocking braids” of [9] in order to give xn a very
strong rigidity property (see Propositions 4 and 5), but it should also contain
pieces which prevent both xn and ∂xn from being absorbable.

First, recall the reverse antiautomorphism rev, σi1σi2 . . . σil 7→ σil . . . σi2σi1 .
We shall make use of the construction of ”blocking braids” from [9]; we do not
need the precise definition given there (Definition 4.4) but rather the specific
construction given in the proof of Lemma 4.7. The output is a braid x′n ∈ Bn
(of infimum 0) with the following properties: its right and left normal forms
are the same, the starting set of its first factor contains all possible crossings
except σn−1 and its last factor is a single atom, namely σ2.

We are now ready to define our special braid xn: we set

xn = rev(x′n) · σ−1
n−1∆ ·∆σ

−1
n−1 · x′n.

It is clear that properties (1) to (3) are satisfied; specifically we have sfirst =
slast = σ2 and the left and right normal form of xn contains as a factor the
complement of the atom σn−1.
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Remark 5 – Properties (1), (2), and (3) of xn above are the only ones used
in the proof that CAL(Bn) has infinite diameter.

– Property (2) implies in particular that xn is rigid (see Section 2.1).
– xn is not absorbable, and neither is ∂xn. Indeed, Property (3), together

with Lemma 2, implies that xn is not absorbable, as it contains a factor
which by Example 1 (5) is not absorbable. Similarly, the first and last
factors of xn contain only one atom (Property (2)), so the corresponding
factors of ∂xn are of the form σ−1

i ∆; in particular, ∂xn is not absorbable,
either.

From now on, we fix an arbitrary braid index n > 4 and we write x = xn;
we write r for the number of factors in the normal form of x.

Lemma 12 Suppose v is a nontrivial positive suffix of x, and m a non-
negative integer.

(a) The product v ·xm is in left normal form as written, i.e. the left normal
form of the product is just the juxtaposition of the respective left normal forms
of v and of xm.

(b) For every nontrivial positive prefix t of vxm, we have v ∧ t 6= 1.

Proof As the last factor of the right normal form of x is σ2 (Proposition 3
(1-2)), the only simple suffix of x is σ2; in particular the last factor of the left
normal form of v is σ2. But this is also the first factor of the left normal form of
xm; because the pair (σ2, σ2) is left-weighted, we obtain that the product v ·xm
is in left normal form as written, proving (a). In particular, ∆∧ vxm = ∆∧ v.

Now let σ be a letter which divides t. In order to prove (b), it is sufficient
to show that σ 4 v. But we have: σ 4 ∆ ∧ t 4 ∆ ∧ vxm = ∆ ∧ v 4 v.

The lemma allows to show that every prefix of some positive power of x lies
exactly between two successive powers of x with respect to the prefix order.
We first introduce some notation.

Notation 4 For any braid z with infimum 0 we define the non-negative inte-
ger λx(z) = max{k ∈ Z, xk 4 z}.

Proposition 4 Let z be a positive braid with infimum 0; let λ = λx(z). Then
the following are equivalent:

(a) there exists a positive integer m such that z 4 xm,
(b) xλ 4 z 4 xλ+1.

In this case, the product of the λr first factors of the left normal form of z is
exactly xλ, that is ∆λr ∧ z = xλ.

Proof The direction (b) =⇒ (a) is obvious. To show the converse, we need to
show that z 4 xλ+1. We may assume that z is not a power of x. Consider the
braid d = z ∧ xλ+1; by definition there exist positive braids t and v 6= 1 such
that z = dt, xλ+1 = dv and t∧ v = 1. Note that xλ is a prefix of d, so that v is
a suffix of x. Now since z = dt is a prefix of xm = dvxm−λ−1, we deduce that
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t is a prefix of vxm−λ−1. If t is non-trivial, then we obtain by Lemma 12 (b)
that t ∧ v 6= 1, which is absurd. Thus t = 1, which means that z = z ∧ xλ+1,
as we wanted to prove.

The second part of the statement follows from the calculation:

xλ = xλ ∧∆λr 4 z ∧∆λr 4 xλ+1 ∧∆λr = xλ.

where the last equality is due to the rigidity of x.

We now see that even without the hypothesis that z is a prefix of some
power of x, provided that λx(z) is big enough, there is an initial segment of
the left normal form of z which consists of a power of x.

Proposition 5 Let z be a braid of infimum 0 and suppose that λ = λx(z) > 2.
Then the product of the (λ − 1)r first factors of the left normal form of z is
exactly xλ−1.

Proof We may assume that xλ 6= z, otherwise the result is trivial. So there
exists a non-trivial positive A so that z = xλA. Write s1 . . . sr for the normal
form of x. Let 1 < j < r be the biggest integer so that sj has the form σ−1

i ∆
(see Proposition 3(3)). From the algorithm for computing left normal forms
– see [17], Proposition 1 –, and because x is rigid, it follows that the left
normal form of xλA starts with xλ−1s1 . . . sj ; otherwise inf(z) = 0 would be
contradicted.

Propositions 4 and 5 admit analogues ”on the right”, namely if z is a suffix
of some positive power of x, then z lies between two successive powers of x with
respect to the suffix order. Moreover, if k > 2 is the maximal integer so that
xk is a suffix of z, then the left normal form of z has a final segment consisting
of xk−1. However, these facts will not be used in the proof of Theorem 3 so
we do not prove them. Instead, we state the easier:

Proposition 6 Let z be a positive braid of infimum 0 and assume that there
is a positive integer k so that xk+1 < z < xk. Then the final segment of length
kr in the left normal form of z consists of xk.

Proof Again, we may assume that z is not a power of x. There exist by hypoth-
esis some non-trivial positive braids v and w so that xk+1 = wz and z = vxk.
Combining both, we get xk+1 = wvxk; cancelling xk on the right, it follows
that x = wv, so that v is a suffix of x. By Lemma 12(a), z = vxk is in left
normal form as written. This shows the result.

Proposition 7 Suppose that z1, z2 are braids with infimum 0; let vi = zi∆
Z

be the vertex of CAL whose distinguished representative is zi (i = 1, 2). Let
λ1 = λx(z1) and λ2 = λx(z2). Assume that λ2 − λ1 > 3. Then the path
A(v1, v2) contains A(xλ1+1∆Z, xλ2−1∆Z).
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Proof See Figure 3. We look at the two paths γ1 = A(v1, x
λ2−1∆Z) and γ2 =

A(1, v2).
We claim that γ1 and γ2 coincide along A(xλ1+1∆Z, xλ2−1∆Z).
Let us prove this claim. On the one hand, by Proposition 5, A(1, xλ2−1) is

an initial segment of γ2.
On the other hand, let z3 = z1 ∧ xλ2−1 and let v3 be the vertex of CAL

whose distinguished representative is z3. By Lemma 4, γ1 is the concatenation
of A(v1, v3) and A(v3, x

λ2−1∆Z). Note that λx(z3) = λ1. By Proposition 4,
xλ1 4 z3 4 xλ1+1. It follows that

xλ2−λ1−1 < z−1
3 xλ2−1 < xλ2−λ1−2.

By Proposition 6, the left normal form of z−1
3 xλ2−1 terminates with (λ2−λ1−

2)r factors whose product is exactly xλ2−λ1−2. In other words, A(v3, x
λ2−1∆Z)

has a final segment equal to A(xλ1+1∆Z, xλ2−1∆Z) and our claim is shown.

Fig. 3 Proof of Proposition 7.

Now consider the path γ formed by the subpath of γ1 between v1 and
xλ2−1∆Z, followed by the subpath of γ2 between xλ2−1∆Z and v2. Observe
that γ connects v1 and v2 and that the product of the labels of the successive
edges along γ gives a left normal form. This says that γ = A(v1, v2), hence
showing the lemma.

We are now ready to complete the proof of Theorem 3. We will do this by
proving the following claim.

Claim For all positive integers N , the Nth power of x lies at distance at
least N

2 from the identity vertex in CAL.
In order to prove this claim, we fix an N , and suppose for a contradiction

that there exists a path of length K, with K < N
2 , which connects the identity

vertex with the vertex xN∆Z . Let v0 = 1, v1, . . . , vK = xN∆Z be the vertices
along this path. Recall that vi denotes the unique representative with infimum
0 of the coset vi. Notice that λx(v0) = 0 and λx(vK) = N . Thus there is some
integer i between 0 and K − 1 such that λx(vi+1) > λx(vi) + 3. This index i
will play a key role in what follows.

By Proposition 7, the path A(vi, vi+1) contains the subpath

A(xλx(vi)+1∆Z, xλx(vi+1)−1∆Z).
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We will see that this contradicts the equality dAL(vi, vi+1) = 1. The ver-
tices vi and vi+1 cannot be connected by an edge labeled by a simple ele-
ment, otherwise A(vi, vi+1) would be a path of length 1 which cannot contain

A(xλx(vi)+1∆Z, xλx(vi+1)−1∆Z) as a subpath. Thus it only remains to see that
there cannot be any absorbable element y so that viy ∈ vi+1∆

Z. Actually,

such a braid y must have the form y = vi
−1vi+1∆

k for some integer k. In

order for y to be absorbable, we must have k = k1 = − inf(vi
−1vi+1) or

k = k2 = − sup(vi
−1vi+1). In the first case, y is the braid whose left nor-

mal form is given by reading the edges along A(vi, vi+1) and thus cannot be
absorbable, by Lemma 2. In the second case, y is negative; its inverse y−1

is a positive braid whose left normal form is obtained by reading the edges
along the path A(vi+1, vi). Again, this braid cannot be absorbable because its
left normal form contains ∂x as a subword. This contradicts the choice that
dAL(vi, vi+1) = 1, completing the proof of the claim and of Theorem 3.

3.3 Quasi-isometry with the curve graph

To conclude this paper, we turn to the conjecture formulated in Section 2.2 as
Open Problem 2. 6: we conjecture that for n > 4, the additional length graph
CAL(Bn) is quasi-isometric to CG, the curve graph of the n-times punctured
disk. If this conjecture is true, then our previous results show in particular
that Garside normal forms in Bn project to unparameterized quasi-geodesics
in CG.

We first comment on the case n = 3, comparing the additional length graph
of the 3-strand braid group and the curve graph of the thrice punctured closed
disk D3. As we already noticed (Example 2 2.), CAL(B3) is the one-skeleton
of Bestvina’s normal form complex: this is quasi-isometric to a trivalent tree
([2, Example 2.4, Figure 1]). On another hand, the curve graph of the so-
called “sporadic” surface D3 is a Farey graph, which is quasi-isometric to an
infinite-valence tree. Thus CAL(B3) and CG(D3) are not quasi-isometric.

We return to the case n > 4. In an attempt to prove our conjecture, we
shall construct a Lipschitz map

CG −→ CAL(Bn).

The most natural way to think of this map is to introduce first another model
for the curve graph. Start with the Cayley graph of Bn, with respect to any
finite generating set, for instance Garside’s. Next we recall that there are only
finitely many round simple closed curves in Dn, the disk with n punctures lined
up horizontally. For each such curve c, look at the set Sc ⊂ Bn consisting of
all braids which stabilise c, and build a cone on the subset Sc of the Cayley
graph, i.e. introduce a new vertex and connect each element of Sc by an edge
of length one to this new vertex. Also build copies of these finitely many cones
all over the Cayley graph by translating them using the left action of Bn on
the Cayley graph. Let us denote the resulting space CGˆ; this is sometimes
called the “electric space”.
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As proven by Masur and Minsky [25, Lemma 3.2], the space CGˆ is quasi-
isometric to the curve graph of the n-times punctured disk; a quasi-isometry
CGˆ → CG is given by sending the vertex of the Cayley graph corresponding
to x ∈ Bn to the curve x.c0, where c0 is any simple closed curve in Dn (e.g. a
round one).

Now we can construct a very nice map φ : CGˆ → CAL. It suffices to map
vertices and edges of CGˆ belonging to the Cayley graph by the identity map.
Every cone vertex is mapped in the same way as an arbitrarily chosen one
of its adjacent vertices. Finally, every cone edge can be sent to an arbitrarily
chosen edge path in CAL of length at most nine (this is possible by Lemma 11).

Conjecture 1 The map φ : CGˆ→ CAL(Bn) is a quasi-isometry.

All that remains to be proven is that the map φ does not shrink distances
too much. More precisely, it suffices to prove that there exists a positive number
D with the following property: if x ∈ Bn is such that dAL(1G, x) = 1, then
dCGˆ(1G, x) 6 D. This comes down to the very plausible claim that every
absorbable braid is the product of at most D braids fixing some round curve.
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