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Abstract. We establish relations between both the classical and the dual

Garside structures of the braid group and the Burau representation. Using
the classical structure, we formulate a non-vanishing criterion for the Burau

representation of the 4-strand braid group. In the dual context, it is shown that

the Burau representation for arbitrary braid index is injective when restricted
to the set of simply-nested braids.

1. Introduction

The (reduced) Burau representation

ρn : Bn ÝÑ GL
`

n´ 1,Zrq˘1s
˘

was the first possible candidate for a faithful linear representation of the braid
group on n strands Bn and it has been known for long to be faithful in the case
of the 3-strand braid group [MP]. However, Moody [Mo] showed that the Burau
representation is not faithful for any braid index n ě 9. This was brought down to
n ě 6 by Long and Paton [LP] and finally Bigelow showed the non-faithfulness of ρ5
[Bi]. Despite these negative results, the linearity question of the braid groups was
settled in the positive independently by Krammer [Kra] and Bigelow [Bi2]. They
showed that another linear representation

Ln : Bn ÝÑ GL

ˆ

npn´ 1q

2
,Zrq˘1, t˘1s

˙

constructed by Lawrence [Law] is faithful for all n. The representation Ln is now
known as the Lawrence-Krammer-Bigelow representation, or LKB representation
for short.

At present, the question of the faithfulness of the Burau representation in the
case n “ 4 remains open. The linearity question itself was solved, nevertheless
the problem to determine whether ρ4 is faithful or not remains of considerable
importance because the non-faithfulness of ρ4 would imply that the Jones poly-
nomial does not detect the unknot. This follows from Bigelow’s observation that
the non-faithfulness of ρ4 is equivalent to the non-faithfulness of the Jones and
Temperley-Lieb representations of B4 [Bi3] and from the fact that, if non-trivial,
the kernel of these representations contains a braid that yields a non-trivial knot
with trivial Jones polynomial [It]. Another interesting related problem is to study
the image of the Burau representation – an old and widely open question asks
which pn ´ 1q ˆ pn ´ 1q matrices over Zrq˘1s can appear as the image under the
(reduced) Burau representation of some braid [Bir, Appendix Research Problems
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14]. These questions have been studied from both an algebraic and order point of
view in [Deh], leading to some partial faithfulness properties.

The present paper aims to establish relations between the Garside structures of
the braid group and the Burau representation, thus providing a partial answer to
[Bir, Appendix. Research Problems 17]. Our motivation was to understand to what
extent the Burau representation is close to being faithful, and when faithfulness
property breaks down. This not only helps to attack the faithfulness problem of
the 4-strand Burau representation, but also provides new insights for the image
and the kernel of the Burau representation for arbitrary braid index, even for the
simplest case n “ 3 (see Corollary 6.11 below).

The classical Garside structure consists in a lattice structure together with a
special element ∆ satisfying some properties initially discovered by Garside in [Ga].
A crucial output of this structure is the classical (left) normal form of a braid x,
which is a unique decomposition of the form

Ncpxq “ ∆ps1 ¨ ¨ ¨ sr

in which the factors belong to the set of the so-called simple elements. The classical
supremum and infimum of x are defined by supcpxq “ p ` r and infcpxq “ p,
respectively. The classical canonical length of x is defined by `cpxq “ r; the classical
Garside length lcpxq is the length of x with respect to the simple elements. The
latter satisfies lcpxq “ maxpsupcpxq, 0q ´minpinfcpxq, 0q.

Slightly different but very close in spirit is the dual Garside structure (or BKL
structure) discovered by Birman, Ko and Lee [BKL] which leads to the dual (left)
normal form of a braid x:

Ndpxq “ δpd1 ¨ ¨ ¨ dr

where the factors belong to the set of the so-called dual simple elements. The dual
supremum, infimum and canonical length of a braid x are defined similarly and
denoted by supdpxq, infdpxq and `dpxq respectively. The dual Garside length ldpxq
is the length of x with respect to the dual simple elements; it satisfies ldpxq “
maxpsupdpxq, 0q ´minpinfdpxq, 0q. See Section 2 for more details on both classical
and dual Garside structures of the braid group.

Our first main result provides a non-vanishing criterion for the Burau represen-
tation ρ4 using the classical Garside structure.

Theorem 3.4. If the classical left normal form of a 4-braid x does not contain a
factor pσ2σ1σ3q then ρ4pxq ‰ 1.

In the dual framework, we obtain more general and strong connections. For a
non-zero Laurent polynomial Λ in the variable q, let us denote by mpΛq and MpΛq
the minimal and maximal degrees of the variable, respectively. As a convention, we
define mp0q “ `8 and Mp0q “ ´8.

For a matrix Λ “ pΛijq P GL
`

n´ 1,Zrq˘1s
˘

, we set

mpΛq “ mintmpΛijq, 1 ď i, j ď n´ 1u, and MpΛq “ maxtMpΛij , 1 ď i, j ď n´ 1u.

In Section 6 we will introduce the notion of simply-nested braid; roughly speak-
ing, simply-nestedness is a local condition on the factors of the dual left normal
form of a braid. We will show that the Burau representation completely determines
the normal form of simply-nested braids.

Theorem 6.1. Let x P Bn be a simply-nested braid.
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(i) supdpxq “Mpρnpxqq.
(ii) One can compute the dual normal form of x from the matrix ρnpxq, so the

restriction of the Burau representation on the set of simply-nested braids
Bsn
n is injective.

This provides several consequences for faithfulness questions in general. First of
all, it follows that the Burau matrix of a 3-strand braid completely determines its
dual normal form.

Corollary 6.11. Let x P B3. Then

(i) supdpxq “Mpρ3pxqq,
(ii) infdpxq “ mpρ3pxqq.

(iii) One can compute the dual normal form of x from the matrix ρ3pxq.

For the 4-strand braid group, we will see:

Corollary 6.12. Let x P B4 and Ndpxq “ δpd1 ¨ ¨ ¨ dr. Assume that for all i “
1, . . . , r ´ 1, pdi, di`1q is not in the following list:

"

pa1,2a3,4, a2,4q, pa1,2a3,4, a3,4a2,3q, pa1,2a3,4, a1,2a1,4q,
pa2,3a1,4, a1,3q, pa2,3a1,4, a1,3a2,3q, pa2,3a1,4, a1,3a1,4q

*

Then

(i) supdpxq “Mpρ4pxqq,
(ii) one can compute the dual normal form of x from the matrix ρ4pxq.

In particular, if the dual left normal form of a 4-braid x does not contain a factor
pa1,2a3,4q or pa2,3a1,4q then ρ4pβq ‰ 1.

Finally we give Garside-theoretical constraints for braids of arbitrary braid index
to belong to the kernel of the Burau representation. Let e : Bn Ñ Z be the
abelianization map.

Corollary 6.13. Let x P Bn be a non-trivial braid and Ndpxq “ δpd1 ¨ ¨ ¨ dr. If
there exists r1 ď r such that

(i) The subword xr1 “ δpd1 ¨ ¨ ¨ dr1 is simply-nested,
(ii) r1 ą epdr1`1 ¨ ¨ ¨ drq,

then ρnpxq ‰ 1.

Thus, we conclude that if a braid x is sufficiently close to simply nested braids,
then its Burau matrix is never trivial.

Now we explain the organization of the paper. In section 2 we recall Garside
theoretical no(ta)tions to be used later. Section 3 shows Theorem 3.4. Sections 4-6
are devoted to the proof of Theorem 6.1. This can be sketched as follows. First
we recall from [IW] the wall-crossing labeling of the curve diagram of a braid and
how it is related to the dual Garside normal form (Section 4). Section 5 reviews a
homological interpretation of the reduced Burau representation; in this context we
show how the Burau matrix is related to the wall-crossing labeling. Wall-crossing
labeling therefore serves as a bridge between Burau representation and the dual
Garside structure. Finally, Section 6 introduces the notion of simply-nestedness
and proves Theorem 6.1 and its above mentioned corollaries.

Acknowledgements. The first author acknowledges support by the “initiation
to resarch” project no.11140090 from Fondecyt, MTM2010-19355 and FEDER, and
by Project USA1555, University of Santiago de Chile. The second author is partially
supported by JSPS KAKENHI Grant Numbers 25887030 and 15K17540.
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2. Reminders on the Garside structures of braid groups

Let D2 be the closed disk in C with diameter the real segment r0, n` 1s and Dn
be the n-times punctured disk: Dn “ D2 ´ t1, . . . , nu. We denote the ith puncture
point i P C by pi and put p0 “ 0 P C. As is well-known, the braid group Bn
is identified with the mapping class group of Dn (with boundary fixed pointwise).
We identify the standard Artin generator σi (i “ 1, . . . , n´ 1) with the left-handed
(that is, clockwise) half Dehn twist along the real segment ri, i ` 1s. Throughout
the paper we will consider braids acting on the right. Consequently we will use the
notation pV qx for the action of a braid x on some arc or set of arcs V in Dn.

For 1 ď i ‰ j ď n, we denote by ai,j (or aj,i indifferently) the isotopy class of
the left-handed half Dehn twist along an arc connecting the punctures pi and pj
through the lower part of the disk tz P D2 | Im z ă 0u. Using the Artin generators,
ai,j pi ă jq can be written as

ai,j “ pσj´2 ¨ ¨ ¨σi`1σiq
´1σj´1pσj´2 ¨ ¨ ¨σi`1σiq.

2.1. The classical Garside structure. Let B`n be the monoid of positive braids,
i.e. those braids which can be expressed as words on the letters σi with only positive
exponents. Since the works of Garside [Ga], Adyan [Ad], Thurston [ECHLPT], and
ElRifai and Morton [EM], it is well-known that the monoid B`n induces a lattice
order ďc on Bn called the prefix order, through the relation x ďc y if and only if
x´1y P B`n .

The positive left-divisors (with respect to ďc) of the half-twist of all strands

∆ “ pσ1σ2 ¨ ¨ ¨σn´1q ¨ ¨ ¨ pσ1σ2qpσ1q

are finitely many and generate the group Bn. These are called simple elements (or
positive permutation braids, because they are in one-to-one correspondence with
the symmetric group on n objects). Simple elements have been extensively studied
in [EM], where a nice geometric description of them is given: a positive braid x is
a simple element if and only if each pair of strands in x has at most one crossing.
The pair pB`n ,∆q is generally called the classical (usual) Garside structure of the
braid group.

An ordered pair of two simple elements ps, s1q is said to be left-weighted if ∆^c

pss1q “ s, where ^c denotes the greatest common divisor with respect to the lattice
ordering ďc.

Proposition-Definition 2.1. [Ad, EM] Let x P Bn. There exists a unique de-
composition of x of the form

Ncpxq “ ∆ps1 ¨ ¨ ¨ sr,

where p P Z and s1, . . . , sr are simple elements with s1 ‰ ∆, sr ‰ 1 such that
(provided r ě 2) for each i “ 1, . . . , r ´ 1, the pair psi, si`1q is left-weighted. We
call Ncpxq the classical (left) normal form of x.

The notion of left-weightedness for the usual Garside structure is understood as
follows. The starting set and the finishing set of a simple element s are defined by

Spsq “ ti P t1, . . . , n´ 1u | σ´1
i s P B`n u,

F psq “ ti P t1, . . . , n´ 1u | sσ´1
i P B`n u,
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respectively. In terms of crossings of braid diagrams, i P Spxq (i P F pxq, respec-
tively) if and only if the strands numbered i and i` 1 at the beginning of x (at the
end of x, respectively) do cross in x.

Proposition 2.2. [EM] An ordered pair of two simple elements ps, s1q is left-
weighted if and only if Sps1q Ă F psq.

Thus, in terms of crossings the left-weightedness condition says that no crossing
σ from s1 can be moved to s in such a way that sσ is still simple.

2.2. The dual Garside structure. Let B`˚n be the monoid of dual positive braids,
generated by positive powers of all elements in the family tai,ju1ďiăjďn and δ “
σn´1 ¨ ¨ ¨σ2σ1 be the braid corresponding to the clockwise rotation of all strands by
one notch.

Birman, Ko and Lee [BKL] showed that pB`˚n , δq is another Garside structure
for the braid group. In particular the monoid B`˚n induces a lattice order on Bn,
which we denote by ďd (x ďd y ô x´1y P B`˚n ) and the dual positive divisors
of δ (with respect to ďd) form a finite generating set called the set of dual simple
elements. The pair pB`˚n , δq is called the dual Garside structure of the braid group.

The notion of left-weightedness is defined in the same way as in the classical case:
an ordered pair of dual simple elements pd, d1q is left-weighted if δ^d pdd

1q “ d, here
^d is the greatest common divisor with respect to ďd. Then we have, analogous to
the classical left normal form, the dual left normal form.

Proposition-Definition 2.3. [BKL] Let x P Bn. There exists a unique decompo-
sition of x of the form

Ndpxq “ δpd1 ¨ ¨ ¨ dr,

where p P Z and d1, . . . , dr are dual simple elements with d1 ‰ δ, dr ‰ 1 such that
(provided r ě 2) for each i “ 1, . . . , r ´ 1, the pair pdi, di`1q is left-weighted. We
call Ndpxq the dual (left) normal form of x.

The dual simple elements can be more easily described and studied viewing them
as mapping classes of the punctured disk Dn. To this end we isotope the latter to
the following model:

tz P C, |z| ď 2u ´ tpi “ e
?
´1πn pn`1´2iq, i “ 1, . . . , nu;

we denote by Γ the circle |z| “ 1 along which the punctures are placed. For
simplicity the ith puncture will be denoted by i instead of pi. The generator ai,j is
then a clockwise (left-handed) half Dehn twist along the chord segment connecting
the punctures i and j.

Let us now describe the set of dual simple elements. For r “ 2, . . . , n, take r
punctures i1, . . . , ir in this order when running along Γ clockwise from i1 to ir. All
braid words obtained as a concatenation of r´ 1 consecutive letters taken from the
sequence pair,i1 , air´1,ir , . . . , ai1,i2q in this order, up to cyclic permutation, represent
the same braid P .

Geometrically, as a mapping class of Dn, the braid P corresponds to a clockwise
rotation by one notch of a neighborhood of the convex polygon in Dn whose vertices
are the punctures i1, . . . , ir. Due to this correspondence, we call such a braid P
a (convex) polygon and we will often confuse P with the corresponding convex
polygon in Dn. For example, the dual Garside element δ corresponds to the polygon
which is the convex hull of all punctures. Notice that when r “ 2, the polygon is
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degenerated and corresponds to a single letter ai1,i2 (a single half Dehn twist about
the chord segment joining the two punctures). Two polygons which are disjoint
commute; their respective actions on the disk are totally independent from each
other. Any dual simple element can be written in a unique manner as a product of
disjoint polygons (up to permutation of the factors) [BKL].

For i, j P t1, . . . , nu, let pi, jq be the subarc of the circle Γ “ tz P C | |z| “ 1u
described by the move of the puncture i clockwise along Γ until the position j.
Then the notion of left-weightedness in the dual context can be described as follows.
Let ai,j and ak,l be two generators. We say that ak,l obstructs ai,j and we write
ak,l $ ai,j if k P pj, i ´ 1q and l P pi, j ´ 1q (recall that we simply write i to mean
the ith puncture pi). The relation $ is not symmetric: ak,l $ ai,j does not imply
ai,j $ ak,l.

Proposition 2.4. [BKL] Let d “ P1 ¨ ¨ ¨Pr and d1 “ Q1 ¨ ¨ ¨Qr1 be dual simple
elements expressed as products of disjoint polygons. Then the pair pd, d1q is left-
weighted if and only if for any two vertices i and j of a polygon among Q1, . . . , Qr1 ,
there exists a polygon among P1, . . . , Pr having two vertices k and l such that
ak,l $ ai,j .

3. Burau representation and the classical Garside structure of B4

This section originated in trying to exploit a result by Lee and Song which can
be stated as follows:

Theorem 3.1. [LS] If non-trivial, the kernel of the Burau representation ρ4 is a
pseudo-Anosov subgroup of B4.

Pseudo-Anosov braids are mapping classes of the punctured disk Dn represented
by pseudo-Anosov homeomorphisms: those which are neither a root of the full twist
∆2, nor permute a family of disjoint isotopy classes of simple closed curves in Dn
[FM].

An important result relating pseudo-Anosov braids and Garside theory asserts
that any pseudo-Anosov braid admits a power which is conjugate to a rigid braid
[BGGM], meaning that it is cyclically left-weighted: the ordered pair formed by
the last and the first factor is left-weighted. Moreover, up to taking further power
we may assume this rigid braid to have even infimum.

Observe now that the Burau matrix ρ4p∆
2q is the homothety of ratio q4: ρ4p∆

2q “

q4I3. It follows that the Burau representation ρ4 is not faithful if and only if there
exists a rigid pseudo-Anosov positive braid with infimum 0 whose Burau matrix is
an homothety of ratio q4p for some positive integer p. This motivates to explore
some conditions under which the Burau matrix is not an homothety.

Let x P B4. For i “ 1, 2, 3 we define Mipxq “ maxtMpρ4pxqijq, 1 ď j ď 3u,
in words the maximal degree of the variable q among the Laurent polynomials
apparing in the ith row of the reduced Burau matrix of x.

We recall the following computations (see Section 5):

ρ4pσ1q “

¨

˝

´q 0 0
1 1 0
0 0 1

˛

‚; ρ4pσ2q “

¨

˝

1 q 0
0 ´q 0
0 1 1

˛

‚; ρ4pσ3q “

¨

˝

1 0 0
0 1 q
0 0 ´q

˛

‚.

Lemma 3.2. Let x P B4. Suppose x has infimum 0 and Ncpxq “ s1 ¨ ¨ ¨ sr, with
r ě 2. Suppose that for all i “ 1, . . . , r, si ‰ σ2σ1σ3. Denote simply by Mi the
integer Mipxq. Then we have the following:
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‚ If Sps1q “ t1u then M1 ąM2 and M1 ąM3 ` 1,
‚ if Sps1q “ t2u then M2 ěM1 and M2 ąM3,
‚ if Sps1q “ t3u then M3 ěM1 and M3 ěM2,
‚ if Sps1q “ t1, 2u then either M1 ąM2 and M1 ąM3 ` 1, or M2 ěM1 and
M2 ąM3,

‚ if Sps1q “ t2, 3u then either M2 ě M1 and M2 ą M3, or M3 ě M1 and
M3 ěM2,

‚ if Sps1q “ t1, 3u then either M1 ą M2 and M1 ą M3, or M3 ě M1 and
M3 ěM2.

Moreover, the following inequality holds: supcpxq ďMpρ4pxqq ď 3 supcpxq.

Proof of Lemma 3.2. The proof is by induction on r. A direct calculation shows
that all conclusions are correct for the case r “ 2. Here we remark that in the case
r “ 1 and s1 “ σ1 (Sps1q “ t1u), the conclusion does not hold since M1pσ1q “
M3pσ1q ` 1.

Suppose now r ą 2. Write x “ s1x
1; by induction x1 satisfies the conclusions of

the lemma. We now distinguish 6 cases, according to the possible values of Sps1q.
In each case, there are several possibilities for s1. Each of them leads to conditions
on the starting set of s2, the first factor of x1, because of the left-weightedness
condition on the pair ps1, s2q. By induction hypothesis this gives relations between
the integers M 1

i :“ Mipx
1q. In each case, using the explicit computation of ρ4ps1q,

we express the integers Mi “ Mips1x
1q in terms of the M 1

i and show that they
satisfy the expected relations. In each case, the computations to be performed
show that Mpρ4px

1qq` 1 ďMpρ4ps1x
1qq ďMpρ4px

1qq` 3; this shows the last claim
in the lemma.

We present the cases Sps1q “ t2u and Sps1q “ t1, 3u; this will have the advantage
to show the failure in the argument when a factor σ2σ1σ3 appears. Other cases are
proven similarly.

Case Sps1q “ t2u. The simple element s1 is one of the following: σ2, σ2σ1,
σ2σ3, σ2σ1σ3σ2 or σ2σ1σ3. We treat two examples; again the three others are dealt
with similarly.

Suppose s1 “ σ2. Then F ps1q “ t2u and by left-weightedness Sps2q “ t2u. By

induction, we have M 1
2 ě M 1

1 and M 1
2 ą M 1

3. Multiplying ρ4px
1q on the left by

ρ4pσ2q “

¨

˝

1 q 0
0 ´q 0
0 1 1

˛

‚, the new degrees Mi in the product satisfy M1 “ M 1
2 ` 1,

M2 “ M 1
2 ` 1 and M3 “ M 1

2 Therefore we have M2 “ M1 and M2 ą M3, thus
satisfying the expected conditions when Sps1q “ t2u.

Suppose s1 “ σ2σ1σ3. Then F ps1q “ t1, 3u and by left-weightedness, Sps2q “

t1u, t3u or t1, 3u. By induction M 1
3 ě M 1

1,M
1
2 or M1 ą M2,M3 (with possibly

M1 ąM3` 1). Computing ρ4pσ2σ1σ3q “

¨

˝

0 q q2

´q ´q ´q2

1 1 0

˛

‚we get in the first case

M1 “ M 1
3 ` 2, M2 “ M 1

3 ` 2 and M3 ď maxpM 1
1,M

1
2q ď M 1

3; whence M2 ě M1

and M2 ą M3. In the second case, unless the strongest inequality M 1
1 ą M 1

3 ` 1
holds, there is no reason why a cancellation could not yield M3 ě M2. Therefore
the desired conclusion (M2 ą M3) possibly does not hold and we see that the
argument fails when σ2σ1σ3 is a factor of x.

Case Sps1q “ t1, 3u. Then s1 is σ1σ3, σ1σ3σ2, σ1σ3σ2σ1, σ1σ3σ2σ3 or σ1σ3σ2σ1σ3.
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Suppose s1 “ σ1σ3. We compute ρ4pσ1σ3q “

¨

˝

´q 0 0
1 1 q
0 0 ´q

˛

‚. By left-weightedness,

we have Sps2q Ă t1, 3u and therefore by induction the M 1
i satisfy M 1

1 ąM 1
2,M

1
3 or

M 1
3 ě M 1

1,M
1
2. In the first case x “ σ1σ3x

1 satisfies M1 “ M 1
1 ` 1, M2 ď M 1

1 and
M3 “ M 1

3 ` 1: we have, as expected, M1 ą M2,M3. In the second case, we have
M1 “M 1

1 ` 1,M2 “M 1
3 ` 1,M3 “M 1

3 ` 1 whence M3 ěM1,M2.
Suppose s1 “ σ1σ3σ2. Then we have to check the product of the matrix ρ4pσ1σ3σ2q “

¨

˝

´q ´q2 0
1 q q
0 ´q ´q

˛

‚ by ρ4px
1q, where the M 1

i satisfy by induction M 1
2 ě M 1

1 and

M 1
2 ą M 1

3. This gives M1 “ M 1
2 ` 2, M2 “ M 1

2 ` 1 and M3 “ M 1
2 ` 1 whence

M1 ąM2,M3.

Suppose s1 “ σ1σ3σ2σ1. Compute ρ4pσ1σ3σ2σ1q “

¨

˝

0 ´q2 0
0 q q
´q ´q ´q

˛

‚. On the

other hand we have by induction one of the following set of conditions on x1: M 1
1 ą

M 1
2 and M 1

1 ą M 1
3 ` 1; or M 1

2 ě M 1
1 and M 1

2 ą M 1
3. In the first case we obtain

M1 “M 1
2` 2,M2 ď maxpM 1

2` 1,M 1
3` 1q and M3 “M 1

1` 1 whence M3 ěM1 and
M3 ąM2. In the second case we get M1 “M 1

2`2,M2 “M 1
2`1 and M3 ďM 1

2`1
whence M1 ąM2,M3.

Suppose s1 “ σ1σ3σ2σ3. Compute ρ4pσ1σ3σ2σ3q “

¨

˝

´q ´q2 ´q3

1 q 0
0 ´q 0

˛

‚. By in-

duction hypothesis, as SpS2q Ă F ps1q “ t2, 3u, we have M 1
2 ěM 1

1 and M 1
2 ąM 1

3 or
M 1

3 ěM 1
1,M

1
2. In the first case:

‚ if M 1
2 ą M 1

3 ` 1 then M1 “ M 1
2 ` 2, M2 “ M 1

2 ` 1 “ M3 whence M1 ą

M2,M3,
‚ if M 1

2 “M 1
3 ` 1 then M1 ďM 1

2 ` 2 and M2 “M 1
2 ` 1 “M3 whence we get

M1 ąM2,M3 if M1 “M 1
2 ` 2 and M3 ěM1,M2 if M1 ăM 1

2 ` 2.

In the second case we obtain M1 “M 1
3`3, M2 ďM 1

2`1 and M3 “M 1
2`1 whence

M1 ąM2,M3.

Suppose s1 “ σ1σ3σ2σ1σ3. The reduced Burau matrix of s1 is

¨

˝

0 ´q2 ´q3

0 q 0
´q ´q 0

˛

‚.

On the other hand F ps1q “ t1, 3u whence by induction x1 satisfies: M 1
1 ą M 1

2,M
1
3

or M 1
3 ěM 1

1,M
1
2. In the first case we get M1 ď maxpM 1

2`2,M 1
3`3q, M2 “M 1

2`1,
M3 “ M 1

1 ` 1. This implies M3 ě M1,M2 provided M 1
1 ą M 1

3 ` 1 holds. If on the
contrary M 1

1 “ M 1
3 ` 1 we can say more about M1 (actually there will be no can-

cellation there) because the inequality M 1
1 ąM 1

2 then implies M 1
3`1 ąM 1

2 whence
M1 “ M 1

3 ` 3. This finally shows M1 ą M2,M3. In the second case we obtain
M1 “M 1

3`3, M2 “M 1
2`1 and M3 ď maxpM 1

1`1,M 1
2`1q whence M1 ąM2,M3.

�

Example 3.3. We show that the conclusion for Sps1q “ t2u in Lemma 3.2 does
not necessarily hold if s1 “ σ2σ1σ3. Indeed, let x “ σ2σ1σ3 ¨ σ1σ3σ2σ1 ¨ σ1σ2σ1σ3 ¨
σ1σ3 ¨ σ1σ2 ¨ σ2. This braid has infimum 0 and is in normal form as written; the
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degrees of the entries of its Burau matrix are indicated in the following matrix:
¨

˝

5 8 7
6 7 7
5 7 2

˛

‚.

Lemma 3.2 leads to the following non-vanishing criterion for the reduced Burau
representation of 4-braids.

Theorem 3.4. If the classical left normal form of a 4-braid x does not contain a
factor pσ2σ1σ3q then ρ4pxq ‰ 1.

Proof. Let Ncpxq “ ∆ps1 ¨ ¨ ¨ sr. It is easy to check that if r ď 2, then ρ4pxq ‰ 1 so
we may assume r ą 2.

First we observe that

ρ4p∆q “

¨

˝

0 0 ´q3

0 ´q2 0
´q 0 0

˛

‚

hence M1p∆xq “M3pxq ` 3, M2p∆xq “M2pxq ` 2 and M3p∆xq “M1pxq ` 1.
Assume that Sps1q ‰ t1, 3u. If p is even, then by conjugating by ∆ if necessary,

we may assume that Sps1q “ t1u, t2u, or t1, 2u. By Lemma 3.2, ρ4ps1 ¨ ¨ ¨ srq is not
an homothety hence ρ4p∆

ps1 ¨ ¨ ¨ srq ‰ 1. If p is odd, we may assume similarly that
Sps1q “ t2u, t3u, or t2, 3u hence by Lemma 3.2, M2ps1 ¨ ¨ ¨ srq ě M1ps1 ¨ ¨ ¨ srq or
M3ps1 ¨ ¨ ¨ srq ěM1ps1 ¨ ¨ ¨ srq. On the other hand, ρ4pxq “ 1 implies

M3ps1 ¨ ¨ ¨ srq ` 2 “M2ps1 ¨ ¨ ¨ srq ` 1 “M1ps1 ¨ ¨ ¨ srq,

which is a contradiction.
Now we consider the case Sps1q “ t1, 3u. Assume for a contradiction that ρ4pxq “

1. This implies in particular Mipyxy
1q “ Mipyy

1q for any 4-braids y and y1. We
deduce a contradiction by finding appropriate braids y and y1.

Case 1: s1 “ σ1σ3. If p is even, put y “ ∆σ2σ1σ3σ2: Ncpp∆σ2σ1σ3σ2qxq “
∆p`2s2 ¨ ¨ ¨ sr. By direct calculation and under our hypothesis that ρ4pxq “ Id,

ρ4p∆
p`2s2 ¨ ¨ ¨ srq “ ρ4p∆σ2σ1σ3σ2q “

¨

˝

´q3 0 0
q3 q4 q4

0 0 ´q3

˛

‚.

It follows that M2ps2 . . . srq “ M1ps2 . . . srq ` 1 “ M3ps2 . . . srq ` 1; contradicting
Lemma 3.2 applied with Sps2q Ă t1, 3u (which implies in particular M2 ă M1 or
M2 ďM3).

If p is odd, choose y “ σ2σ1σ3σ2: Ncppσ2σ1σ3σ2qxq “ ∆p`1s2 ¨ ¨ ¨ sr. By direct
calculation

ρ4p∆
p`1s2 ¨ ¨ ¨ srq “ ρ4pσ2σ1σ3σ2q “

¨

˝

0 0 q2

´q ´q2 ´q2

1 0 0

˛

‚.

Hence, M1ps2 ¨ ¨ ¨ srq “ M2ps1 ¨ ¨ ¨ srq “ M3ps2 ¨ ¨ ¨ srq ` 2, contradicting Lemma 3.2
applied with Sps2q Ă t1, 3u.

Case 2: s1 “ σ1σ3σ2, or σ1σ3σ2σ3σ1.
Suppose first that 2 P F psrq; then put y1 “ σ2 if p is even and y1 “ ∆σ2 if p is

odd. Then

Ncpxy
1q “

#

∆ps1 ¨ ¨ ¨ srpσ2q if p is even

∆p`1p∆´1s1∆q ¨ ¨ ¨ p∆´1sr∆qσ2 if p is odd
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Observe that Sp∆´1s1∆q “ t1, 3u. Now because of Lemma 3.2 we must have in
either case M2pxy

1q ă M1pxy
1q or M2pxy

1q ď M3pxy
1q. But on the other hand the

calculations of ρ4pσ2q already given as well as

ρ4p∆σ2q “

¨

˝

0 ´q3 ´q3

0 q3 0
´q ´q2 0

˛

‚

yield the expected contradiction.
Assume then that 2 R F psrq. Conjugating by ∆ if necessary, we may assume

1 P F psrq (and s1 is unchanged). Then Ncpσ
´1
1 xσ1q “ ∆ps11 . . . srσ1, where s11 “

p∆´pσ1∆pq´1s1 satisfies F ps11q “ F ps1q. But as we have already seen σ´1
1 xσ1

cannot be sent by ρ4 to the identity matrix because Sps11q is not t1, 3u.
Case 3: s1 “ σ1σ3σ2σ1, or σ1σ3σ2σ3.
If 2 P F psrq then the same argument as Case 2 applies. Otherwise, conjugating

by ∆ if necessary, we may assume 1 P F psrq.

(i) If p is odd and s1 “ σ1σ3σ2σ1, then consider σ´1
1 xσ1.

(ii) If p is even and s1 “ σ1σ3σ2σ1, then consider σ2xσ1σ2.
(iii) If p is odd and s1 “ σ1σ3σ2σ3, then consider σ2∆xσ1σ2.
(iv) If p is even and s1 “ σ1σ3σ2σ3, then consider σ´1

1 xσ1.

In any case, from Lemma 3.2 we obtain a contradiction. For example, in the case

(iii) we have ρ4pσ2∆xσ1σ2q “ ρ4p∆σ2σ1σ2q “

¨

˝

´q3 ´q3 ´q3

q3 0 0
0 q3 0

˛

‚. On the other

hand, the normal form of σ2∆xσ1σ2 isNcpσ2∆xσ1σ2q “ ∆p`1pσ2σ1σ3σ2σ3qs2 ¨ ¨ ¨ srpσ1σ2q.
This contradicts Lemma 3.2, since Spσ2σ1σ3σ2σ3q “ t1, 2u

�

4. Curve diagrams, the wall-crossing labeling and dual Garside
length

In this section we review a connection between curve diagrams of braids and the
dual Garside structure, which was developed in [IW]. Here we will prove a slightly
stronger result which explains how to read the dual normal form of a braid x from
its curve diagram.

4.1. Curve diagrams. Let E (resp. E) be the oriented arc in Dn consisting of
the real line segment between p1 and pn (resp. p0 and pn). Both line segments E
and E are oriented from left to right. For i “ 0, . . . , n´ 1, we denote by Ei the line
segment of E connecting pi and pi`1. See Figure 1 (a); as a convention, the initial
segment E0 is depicted as dashed line.

For i “ 1, . . . , n, let Wi be the vertical line segment in Dn, oriented upwards,
which connects the puncture pi and the boundary of Dn in the upper half-disk
tz P D2 | Im z ą 0 u. The lines Wi are called the walls, and their union

Ť

iWi is
denoted W . Let Ui be a disk-neighborhood of the puncture pi and set U “

Ť

i Ui.
See Figure 1 (b), (c).

The (total) curve diagram of a braid x is the respective image of E (or sE) under
a diffeomorphism φ representing x which satisfies:

(1) p sEqφ coincides with the real line on U ,
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Figure 1. Curve diagram and walls

(2) p sEqφ is transverse to W and the number of intersections of p sEqφ with W
is as small as possible (which is equivalent to saying that p sEqφ and W do
not bound together any bigon [FGRRW]).

The (total) curve diagram is uniquely defined up to isotopy of Dn that fixes BDn.
We denote by Dx (ĎDx respectively) the (total) curve diagram of a braid x. Figure 1
(c) shows the (total) curve diagram of the braid σ1 P B4; according to our previous
convention, dashed line represents the image of the initial segment E0.

An arc segment (or simply an arc) of the (total) curve diagram Dx (or ĎDx) is
a connected component of Dx ´ pW Y Uq (or ĎDx ´ pW Y Uq). Notice that an arc
segment of ĎDx is in one of the three following cases:

‚ it connects two walls Wi and Wj ,
‚ it connects a wall Wi and a puncture pj (more precisely the neighborhood
Uj),

‚ it connects two punctures pi and pj (more precisely the neighborhoods Ui
and Uj).

In all cases, i ‰ j by construction of the curve diagram. We denote such an arc
segment, in either case, by Ŋpijq. Unless explicitly specified, we will not care about
the orientation of an arc segment; this is reflected in our notation.

4.2. Wall-crossing labeling and dual normal form. We now describe the wall-
crossing labeling. To that purpose, we need to introduce a modified version of the
curve diagrams.

Let x P Bn. Around each puncture pi distinct from the image of pn under x, we
modify the total curve diagram ĎDx inside the neighborhood Ui as shown in Figure
2 (a). We denote the resulting (total) curve diagram by MDx pĞMDxq, and call it
the (total) modified curve diagram of x. Figure 2 (b) shows the (total) modified
curve diagram of σ1 P B4.

Take a smooth parametrization of ĞMDx, viewed as the image of a function
γ : r0, 1s Ñ D2. For each connected component α of ĞMDx´pW YUq, we assign the
algebraic intersection number of W and the arc γpr0, vsq, where v P r0, 1s is taken
so that γpvq P α. Notice that a connected component of ĞMDx´pW YUq naturally
corresponds to an arc segment of ĎDx, since ĞMDx and ĎDx are identical except on
U . This allows to attribute a label to each arc segment of ĎDx; this integer-valued
labeling is called the wall-crossing labeling of x. We define LWcrpxq and SWcrpxq
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Figure 2. Modified curve diagrams

as the largest and smallest possible labels occuring in the wall-crossing labeling for
arc segments in the curve diagram Dx, respectively.

Notice that to define LWcr and SWcr, we used the largest and smallest labels
only of the curve diagram Dx, not the total curve diagram ĎDx. However, in order to
determine the wall crossing labelings we need to consider the total curve diagram.

The following relates the wall-crossing labeling with the dual length of a braid:

Theorem 4.1. [IW, Theorem 3.3] For a braid x P Bn, we have the following
equalities:

(1) supdpxq “ LWcrpxq.
(2) infdpxq “ SWcrpxq.

Here we show a stronger result than Theorem 4.1, which is suggested by and
is implicit in the proof of [IW, Theorem 3.3]: one can read not only supremum,
infimum, but also dual Garside normal form from the curve diagram. Recall from
Section 2.2 the lattice ordering ďd on Bn.

Theorem 4.2. Let x P Bn be a braid and put ` “ LWcrpxq ´ SWcrpxq. For
k “ `, . . . , 1, we define dk inductively as follows:

(1) d` is the least common multiple (with respect to ďd) of all letters ai,j such

that the curve diagram Dx contains an arc segment Ŋpijq with wall-crossing
labeling LWcrpxq.

(2) dk is the least common multiple (with respect to ďd) of all letters ai,j
such that the curve diagram Dxd´1

` ¨¨¨d´1
k`1

contains an arc segment Ŋpijq with

wall-crossing labeling pk ` SWcrpxqq.

Then the dual normal form of x is given by

Ndpxq “ δSWcrpxqd1 . . . d`.

Before proving Theorem 4.2, we review from [IW] the description of how the
action of a dual simple element affects the curve diagram of a braid and its wall-
crossing labeling. This was the key of the proof of Theorem 4.1.

Dealing with the dual Garside structure, it will be convenient to work with the
model of the punctured disk described in Section 2.2; in that context the wall Wi is
the shortest straight segment connecting the puncture pi to the boundary, oriented
outwards. Notice that the isotopy involved in the change of model for the punctured
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disk does not affect the wall-crossing labeling since the latter is defined in terms of
algebraic intersection of arcs and walls.

Let x P Bn; let d be a dual simple element. Write d “ P1 ¨ ¨ ¨Pr the decomposition
of d into a product of disjoint polygons. For i “ 1, . . . , r, let Ni be a regular
neighborhood of the polygon Pi in Dn. Let Ai be an annulus which is a regular
neighborhood of the boundary of Ni. Suppose moreover that Ai is chosen so that
none of its two boundary components forms a bigon together with the walls W or
the diagram Dx and so that as many intersection points of Dx and W as possible
lie in Ai.

Now Dxd and its wall-crossing labeling are obtained as follows. The respective
actions of each of the polygons Pi are independent; each of them acts non-trivially
only on the inner complementary component of the corresponding annulus and on
the annulus itself (where the diagram just describes a spiral). For each i “ 1, . . . , r,
Ni is turned by one notch in the clockwise direction and all labels are increased by
one; on the annulus Ai, Dxd and the corresponding labels are interpolated linearly;
see Figure 3. The action of the inverse of a dual simple element can be described
in a very similar way, the twisting on Ni being in the opposite direction, and all
labels being decreased by one.

Figure 3. How to draw the curve diagram of xd from Dx

Proof of Theorem 4.2. We prove the theorem by induction on ` “ `pxq “ LWcrpxq´
SWcrpxq. The case ` “ 0 follows from Theorem 4.1. Suppose that ` ě 1.

In [IW, Lemma 3.5], it is seen that if ` ě 1, then LWcrpxd´1
` q “ LWcrpxq´ 1 and

SWcrpxd´1
` q “ SWcrpxq, hence right multiplication by d´1

` decreases `. Therefore
it remains to show that pd`´1, d`q is left-weighted.

We check the left-weightedness using Proposition 2.4. Write the dual simple
elements d` and d`´1 as products of disjoint polygons: d`´1 “ P1 ¨ ¨ ¨Pr`´1

and d` “
Q1 ¨ ¨ ¨Qr` , respectively. Let i, j be two vertices of some polygon Q P tQ1, . . . , Qr`u.
We must show that there exists a polygon P P tP1, . . . , Pr`´1

u having vertices k, l
such that ak,l $ ai,j . By definition of d`´1, it is sufficient to show that Dxd´1

`

admits an arc segment Ŋpklq with label LWcrpxq ´ 1 and such that ak,l $ ai,j .

Assume first that the diagram Dx admits an arc segment Ŋpijq with label LWcrpxq.
Then according to the description above of the action of the inverse of a polygon,
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the diagram Dxd´1
`

admits an arc segment Ŋpklq with label LWcrpxq ´ 1 such that

k P pj, i´1q and l P pi, j´1q, as desired. Moreover, we notice that if gi,j and hi,j are
the rightmost vertex of Q in pj, i´1q and pi, j´1q respectively, then k P pgi,j , i´1q
and l P phi,j , j ´ 1q. See Figure 4 (a).

Assume now that Dx does not have an arc segment Ŋpijq with label LWcrpxq. Since
both i and j are vertices of Q, by definition of Q there must exist arc segments
Ŋpibq,Ŋpjcq of Dx with label LWcrpxq, for some punctures b, c R ti, ju, possibly b “ c.

Suppose that such a puncture b can be chosen so that ab,iai,j is a dual simple
braid. This means that b P pi` 1, j ´ 1q. But we have just seen that the action of

Q´1 produces an arc segment Ŋpklq labeled by LWcrpxq ´ 1 in the diagram Dxd´1
`

,

such that k P pj, i´ 1q (because the rightmost vertex of Q in the arc pb` 1, i´ 1q
certainly lies in the subarc pj, i ´ 1q) and l P pi, b ´ 1q Ă pi, j ´ 1q). Similarly, if c
can be chosen so that ac,jai,j is a dual simple braid, we get a pair of punctures k, l
with the expected property. See Figure 4 (b).

Figure 4. Proof of Theorem 4.2; all arc segments represented are
labeled LWcrpxq, crosses indicate vertices of the polygon Q.

Finally, suppose that no arc segment Ŋpbiq nor Ŋpjcq with labeling LWcrpxq of Dx

has the above property. Then b P pj ` 1, i´ 1q, c P pi` 1, j ´ 1q and b ‰ c. Among

all b so that Dx admits an arc Ŋpbiq labeled LWcrpxq, let b0 be the leftmost one.

Similarly, among all c so that Dx admits an arc Ŋpjcq labeled LWcrpxq, let c0 be
the leftmost one. The punctures i, j, b0 and c0 are all distinct and vertices of the
polygon Q. By definition of d`, there must exist an arc segment Ŕpf1f2q in Dx with
labeling LWcrpxq such that f1 P pj ` 1, b0q, f2 P pi` 1, c0q; the punctures f1, f2 are

also vertices of Q. But then Dxd´1
`

admits an arc Ŋpklq labeled LWcrpxq ´ 1 with

k P pj, f1 ´ 1q and l P pi, f2 ´ 1q, thus with the required property. See Figure 4 (c).
This completes the proof of Theorem 4.2. �

5. Burau representation

In this section we review a homological construction of the Burau representation;
this interpretation is used to relate the latter with the wall-crossing labeling.

5.1. The Burau representation. Fix the base point ˚ “ p0 P BDn on the bound-
ary of Dn. The fundamental group π1pDnq is a free group of rank n where the
free generator xi is represented by a loop which rounds the ith puncture pi once
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clockwise. Let ε : π1pDnq Ñ Z “ xqy be the homomorphism which sends all xi
to the generator q. Geometrically, for a loop γ, εprγsq is the sum of the algebraic
winding number of γ about the puncture points tpiu (in the clockwise direction).

Let π : ĂDn Ñ Dn be the infinite cyclic covering corresponding to Kerpεq, and fix

a lift r̊ of the base point. The group of covering transformations of ĂDn is identified

with the cyclic group 〈q〉. Then H1pĂDn;Zq can be endowed with a structure of
Zrq, q´1s-module, where multiplication by q corresponds to the deck transformation.

Moreover it turns out that H1pĂDn;Zq is free of rank pn´ 1q as a Zrq, q´1s-module.
Since ε is Bn-invariant, we have a linear representation

ρ : Bn Ñ GLpH1pĂDn;Zqq.
This is called the (reduced) Burau representation. In the rest of this section, we keep

the same notation ε, ĂDn and r̊ for the above defined winding number evaluation
morphism, covering space of Dn and base point.

5.2. Forks. Let Y be the Y -shaped graph consisting of three external vertices: a
distinguished one r, two others v1 and v2 and one internal vertex c and three edges
relating each external vertex to the internal one (see Figure 5 (a)). We orient the
edges of Y as shown in Figure 5 (a).

A fork is an embedded image of Y into Dn such that:

‚ All points of Y ´ tr, v1, v2u are mapped to the interior of Dn.
‚ The distinguished vertex r is mapped to the base point ˚.
‚ The other two external vertices v1 and v2 are mapped to two different

puncture points.

Given a fork F , the image of the edge rr, cs is called the handle of F and the
image of rv1, v2s “ rv1, cs Y rc, v2s, regarded as a single oriented arc, is called the
tine of F and denoted by T pF q. The image of c is called the branch point of F .
Figure 5 (b) shows a fork F (with the handle depicted in black line and the tine in
grey bold line).

Figure 5. Fork and standard fork Fi

For a fork F , let γ : r0, 1s Ñ Dn be the handle of F , viewed as a path in Dn and
take a lift

rγ : r0, 1s Ñ ĂDn
of γ so that rγp0q “ r̊. Let ΣpF q be the connected component of π´1pT pF qq that

contains the point rγp1q. The homology class of H1pĂDn;Zq represented by F is then
defined as the homology class represented by ΣpF q. By abuse of notation, we still
denote this homology class by F . Strictly speaking, since ΣpF q is not compact we
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need to work with the homology of locally finite chains H lf
1 p

ĂDn;Zq or H1pĂDn, rP ;Zq,
where rP is the preimage of a small neighborhood of the punctures in Dn. Rigorous
treatments are well-known and give rise to the same conclusions (see [Bi3], for
example), so we do not take care of these subtle points.

Of special importance is the following family of particularly simple forks: for
i “ 1, . . . , n ´ 1, let Fi be the fork whose tine is a straight arc connecting the
ith and the pi ` 1qst punctures and whose handle is contained in the lower half
of the disk Dn (see Figure 5 (c)). These are called standard forks. Standard forks

F1, . . . , Fn´1 form a basis of H1pĂDn;Zq. The group GLpH1pĂDn;Zqq can be identified
with GLpn´ 1;Zrq, q´1sq using the basis of standard forks. This allows to get the
familiar matrix description of the reduced Burau representation:

ρnpσ1q “

ˆ

´q 0
1 1

˙

‘ In´3, ρnpσn´1q “ In´3 ‘

ˆ

1 q
0 ´q

˙

,

ρnpσiq “ Ii´2 ‘

¨

˝

1 q 0
0 ´q 0
0 1 1

˛

‚‘ In´i´2, pi “ 2, . . . , n´ 2q

5.3. The noodle-fork pairing. A noodle is an embedded oriented arc in Dn which
begins at the base point ˚ and ends at some point of the boundary BDn. Noodles

represent relative homology classes in H1pĂDn, BĂDn;Zq.
The noodle-fork pairing (in our notation, it should say fork-noodle pairing) is a

homology intersection (algebraic intersection) pairing

x , y : H1pĂDn;Zq ˆH1pĂDn, BĂDn;Zq Ñ Zrq, q´1s.

Geometrically, it is computed in the following way (see [Bi3] Section 4).
Given a fork F and a noodle N , put T pF q and N transverse with minimal

intersections. Let z1, . . . , zr be the intersection points. Each intersection point zi
then contributes a monomial εiq

ei to xF,Ny, where εi is the sign of the intersection
between T pF q and N at zi and ei is an integer. The noodle-fork pairing is then
given by

xF,Ny “
ÿ

1ďiďr

εiq
ei P Zrq, q´1s.

The integer ei is computed as follows. Let γi be the loop which is the composition
of three paths A, B and C in Dn:

‚ A is a path from ˚ to the branch point of F along the handle of F .
‚ B is a path from the branch point of F to zi along the tine T pF q.
‚ C is a path from zi to ˚ along the noodle N .

Then ei “ εprγisq: that is, ei is the sum of the winding numbers of the loop γi
about the puncture points p1, . . . , pn.

As for forks, we define a distinguished family of noodles: for i “ 1, . . . , n´1, the
standard noodle Ni is the noodle which has empty intersection with the walls and
ends at some boundary point between Wi and Wi`1. Given a braid x, the entries
of its Burau matrix can be computed using the noodle-fork pairing in a fairly direct
manner.

Lemma 5.1 (Burau Matrix formula). Let x P Bn. Then for 1 ď i, j ď n, the entry
ρnpxqij of its Burau matrix is given by ρnpxqij “ xpFiqx,Njy.
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Proof. By definition, pFiqx “
řn´1
k“1 Fkρnpxqik P H1pĂDn;Zq, hence for i, j P t1, . . . , n´

1u we have

xpFiqx,Njy “
n´1
ÿ

k“1

xFk, Njyρnpxqik

It is directly checked that xFk, Njy “ δkj (Kronecker’s delta) hence

xpFiqx,Njy “ ρnpxqij .

�

Example 5.2. As an example of application of Lemma 5.1, we can retrieve the
Burau matrices associated to Artin generators σi. First, we notice that for k “
1, . . . , n ´ 1, i ‰ k ´ 1, k, k ` 1, pFiqσk “ Fi, so that xpFiqσk, Njy “ δi,j . For the
remaining values of i, Figure 6 shows the images pFiqσk.

Figure 6. On the left part, forks Fk´1, Fk and Fk`1 and on the
right part, their images under the action of the braid σk; relevant
noodles are depicted in dashed lines.

With the help of Figure 6 we can conclude:

xpFk´1qσk, Njy “

$

’

&

’

%

0 if j ă k ´ 1 or j ą k,

1 if j “ k ´ 1,

q if j “ k.

xpFk`1qσk, Njy “

$

’

&

’

%

0 if j ă k or j ą k ` 1,

1 if j “ k,

1 if j “ k ` 1.

xpFkqσk, Njy “

#

0 if j ‰ k,

´q if j “ k.

Lemma 5.1 then allows to retrieve the matrices given at the end of Section 5.2.

5.4. Noodle-fork pairing and wall-crossing labeling. We finally review a con-
nection between the integers ei in the computation of the noodle-fork pairing and
the wall-crossing labeling. This will yield the expected relation between the Burau
representation and the wall-crossing labeling.

Let x P Bn. First we recall how to assign wall-crossing labelings for points
belonging to the image pFiqx of the standard fork Fi under x. Let us consider the
part of the curve diagram Dx that is the image of Ei (the line segment between the
i-th and pi`1q-st punctures). We identify this part pEiqx of the curve diagram with
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pT pFiqqx and regard the part of the modified curve diagram pE0YE1Y¨ ¨ ¨YEi´1qx
as the handle of pFiqx. See Figure 7, where we illustrate how to identify the
curve diagram of x “ σ1 P B3 and the image of the standard fork pF2qx. This
identification induces the wall crossing labeling on each connected component of
pFiqx ´ pW Y Uq. For a point z P pFiqx ´ pW Y Uq we denote by Wcrxpzq the
corresponding label.

Figure 7. Viewing a curve diagram as a union of tines of forks,
and viewing initial segments of modified curve diagrams as handles.

Let N be a noodle; we may assume that no intersection point in pT pFiqqx XN
belongs to W Y U .

Lemma 5.3. Fix an intersection point z P pT pFiqqxXN . Let cpzq be the algebraic
intersection number of W and the path C in the definition of the pairing xpFiqx,Ny
(i.e. C is a path from z to ˚ along N). Let epzq be the degree of q in the z-
contribution to xpFiqx,Ny. Then

epzq “Wcrxpzq ` cpzq

Proof. Let A and B be the paths in the definition of the pairing xpFiqx,Ny. Then
Wcrpzq is nothing but the algebraic intersection number of W and the composite
path BA. Hence the algebraic intersection number of W and the loop γ “ CBA is
Wcrxpzq ` cpzq, which is, by definition, equal to epzq “ εpγq. �

Corollary 5.4. For any braid x P Bn, the following inequality holds:

Mpρnpxqq ď supdpxq.

Proof. For we have, by definition and thanks to Lemma 5.1,

Mpρnpxqq “ max
i,j
tMpxpFiqx,Njyqu.

For a standard noodle Nj and a point z P pT pFiqqxXNj the integer cpzq in Lemma
5.3 is always 0 because standard noodles do not intersect with walls. Therefore we
have

max
i,j
tMpxpFiqx,Njyqu ď LWcrpxq

and finally, as LWcrpxq “ supdpxq (Theorem 4.1) we are done. �
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6. Braids whose Burau Matrix detects the dual Garside normal
forms

In view of Corollary 5.4, a natural question is to ask when the converse inequality
holds. Theorem 6.1 will give a sufficient condition for the maximal degree appearing
in the Burau matrix of a braid to be equal to its dual supremum. Actually we will
prove more: under the same condition, it is possible to determine the dual normal
form from the Burau matrix.

To state Theorem 6.1 we first introduce the notion of simply-nestedness as a
refinement of the left-weightedness condition (Proposition 2.4), which will allow us
to get a better control on the action of a braid in dual normal form.

Let d, d1 be two dual simple elements, expressed as products of disjoint polygons
d “ P1 . . . Pr and d1 “ Q1 . . . Qr1 respectively. We say that the ordered pair pd, d1q
is simply-nested if for any polygon Q among Q1, . . . , Qr1 , there exists a unique
polygon P among P1, . . . , Pr such that for any two vertices i, j of Q, the polygon P
has two vertices k, l such that ak,l $ ai,j . A braid x will be said to be simply-nested
if each pair of consecutive factors in its dual normal form is simply-nested.

LetBsn
n be the set of simply nested n-braids. AlthoughBsn

n does not form a group,
Bsn
n is a regular language over the alphabet r1, δs. We also remark that Bsn

n is not
symmetric: x P Bsn

n does not imply x´1 P Bsn
n . A simple example is the 4-braid

x “ pa3,4qpa2,4q. Although x is simply-nested, Ndpx
´1q “ δ´2pa1,2a3,4qpa1,2a1,4q

which is not simply nested.
We now can state our second main result:

Theorem 6.1. Let x P Bn be a simply-nested braid.

(i) supdpxq “Mpρnpxqq.
(ii) One can compute the dual normal form of x from the matrix ρnpxq, so the

restriction of the Burau representation on the set of simply-nested braids
Bsn
n is injective.

For a braid x and i “ 1, . . . , n ´ 1 let MxpEiq be the set of the arc segments
of pEiqx whose wall-crossing labeling attains the maximal value LWcrpxq (possibly
empty). We say that two arc segments in the curve diagram are parallel if both are

described by Ŋpijq for some i, j. We consider the following property (C) (Coherence
property) for a braid x:

Definition 6.2. Let x P Bn and Ndpxq “ δpd1 ¨ ¨ ¨ dr. Express dr as a product of
disjoint polygons: dr “ Q1 ¨ ¨ ¨Qb. We say that x has the property (C) if for each
i “ 1, . . . , n´ 1, any two arc segments α and α1 in MxpEiq intersecting a common
polygon Q P tQ1, . . . , Qbu are parallel and have the same orientation.

Lemma 6.3. If x has the property (C), then supdpxq “Mpρnpxqq holds.

Proof. Let Ndpxq “ δpd1 ¨ ¨ ¨ dr. Take i so that MxpEiq is non-empty. Take the

minimal number k so that there exists an arc segment α “ Ŋpkpq PMxpEiq for some
p ą k. We look at the entry ρnpxqik in the Burau matrix of x, which is equal to
xpFiqx,Nky by Lemma 5.1. In view of Corollary 5.4 and Theorem 4.1, the desired
equality will be shown provided MpxpFiqx,Nkyq “ LWcrpxq.

Let α1 be another arc segment in MxpEiq which intersects the noodle Nk. By

minimality of k, α1 “Őpkuq for some u P pk ` 1, nq. By Theorem 4.2, some polygon
Q in the decomposition of dr has vertices k, p, u; both arcs α and α1 intersect Q.
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Hence by property (C), α and α1 are parallel with the same orientation (notice
that, in particular, u “ p holds). This shows that all arcs in MxpEiq intersecting
the noodle Nk have the same sign of intersection so MpxpFiqx,Nkyq “ LWcrpxq. �

Lemma 6.4. Let x P Bsn
n . Then x has Property (C).

Proof. The proof is by induction on the number r of non-δ factors in the dual
normal form of x. The case r “ 1 is checked by direct calculation. Actually, in this
case pEjqx has at most one maximal labeled arc for any j.

Suppose Ndpxq “ δpd1 ¨ ¨ ¨ dr with r ą 1. Then x1 “ δpd1 ¨ ¨ ¨ dr´1 is also simply-
nested and has the Property (C) by induction hypothesis. Let us express dr´1 and
dr as products of disjoint polygons: dr´1 “ P1 ¨ ¨ ¨Pb1 and dr “ Q1 ¨ ¨ ¨Qb.

For f “ 1, . . . , n ´ 1, suppose that α “ Ŋpijq and α1 “ Őpi1j1q are two arcs in
MxpEf q that intersect a common polygon Q P tQ1, . . . , Qbu. By Theorem 4.2, all
of i, i1, j, j1 are vertices of Q. Following the proof of Theorem 4.2 we can find arcs
β “ Ŋpklq, β1 “ Őpk1l1q in the diagram Dx1 with label Wcrpxq ´ 1 (β, β1 P Mx1pEf q)
and ak,l $ ai,j and ak1,l1 $ ai1,j1 . Moreover we can choose β, β1 so that α and α1

come from β and β1 respectively under the action of Q (see Figure 4 (a)).
By simply-nestedness assumption, k, l, k1, l1 must be vertices of a common poly-

gon P P tP1, . . . , Pb1u. This implies that both β and β1 intersect with the same
polygon P , hence by Property (C) for x1, the arc segments β and β1 are parallel
with the same direction. Therefore the same property holds true for α and α1, as
we wanted to show. �

Remark 6.5. We observe that, although it is a stronger property, simply-nestedness
is fairly easy to check whereas checking Property (C) directly is often a hard task
since we need to know both dual normal form and the curve diagram of braids.

Proof of Theorem 6.1. Lemmas 6.3 and 6.4 show part (i).
We explain how to compute the final factor dr of the dual normal form of x, which

gives an algorithm to compute the whole dual normal form of x from its Burau
matrix. Let Ndpxq “ δpd1 ¨ ¨ ¨ dr and write dr as a product of disjoint polygons:
dr “ Q1 ¨ ¨ ¨Qb.

Our strategy to determine dr is as follows. We show how to find some ai,j
satisfying ai,j ďd dr from ρnpxq. Since dr is written as a product of at most
pn´ 2q letters ai,j , by iterating this procedure at most pn´ 2q times, we eventually
determine dr.

For i “ 1, . . . , n ´ 1, let M c
i pxq “ maxtMpρnpxqjiq | j “ 1, . . . , n ´ 1u, namely,

the maximal degrees of the variable q in the ith column of the Burau matrix of x
(do not confuse Mipxq in Section 3, where we used the maximal degrees of the ith
row). First we show that M c

i pxq gives candidates of ai,j satisfying ai,j ďd dr.

Claim 6.6. We have

minti P t1, . . . , nu | Dj, ai,j ďd dru “ minti P t1, . . . , n´ 1u |M c
i pxq “Mpρnpxqqu.

Proof. Let i0 “ minti P t1, . . . , nu | Dj, ai,j ďd dru. Let k ą i0 be such that
ai0,k ď dr.

First, we show that M c
i0
pxq “ Mpρnpxqq. Since ai0,k ď dr and by Theorem 4.2

there must exist some p P t1, . . . , nu, p ą i0, such that Dx admits an arc α “ Őpi0pq
labeled LWcrpxq “Mpρnpxqq. Let also Q P tQ1, . . . , Qbu having vertices i0, p, k and
let j be such that α PMxpEjq. We observe that α intersects the noodle Ni0 . We
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will show that Mpρnpxqj,i0q “ Mpρnpxqq. Indeed, let α1 P MxpEjq and suppose
that α1 intersects Ni0 . By minimality of i0, α1 must intersect with the polygon Q
and by Property (C), α1 is parallel to α with the same orientation. Hence α and
α1 intersect with Ni0 with the same sign. Therefore MpxpFjqx,Ni0yq “ Mpρnpxqq
as we wanted to show.

Second, we show that for i ă i0, M c
i pxq ‰ Mpρnpxqq. Otherwise, there would

exist some j such that MxpEjq is non-empty and we could find some β PMxpEjq
intersecting the noodle Ni. But then because of Theorem 4.2, β yields a letter
prefix of dr which contradicts the minimality of i0. �

It follows that we can find i0 as above looking at the columns of ρnpxq. We then
proceed to find k such that ai0,k ďd dr. Let j be such that Mpρnpxqj,i0q “M c

i0
pxq.

There might be several ones, we just choose any of them. Then there is a maximally
labeled arc segment α “ Őpi0pq P MxpEjq which intersects the noodle Ni0 . It is
enough to determine p because Theorem 4.2 implies that ai0,p ďd dr. Notice that,
by Property (C), p is unique with the property that pEjqx contains a maximally

labeled arc segment of the form Őpi0pq. In the remaining part of the proof, p and

α “ Őpi0pq are fixed and we explain how to determine p from the Burau matrix.

Claim 6.7. The integer p above satisfies

(i) MpxpEjqx,Np´1yq “Mpρnpxqjpp´1qq “ LWcrpxq,
(ii) MpxpEjqx,Npyq “Mpρnpxqjpq ‰ LWcrpxq.

Proof. (i) First let α1 be any arc segment in MxpEjq intersecting the noodle Np´1.
By minimality of i0 it must also intersect the chord segment joining punctures i0
and p, hence the polygon Q. By Property (C), α1 is parallel to α with the same
direction. This shows (i).

(ii) Consider now an arc α1 P pEjqx which intersects the noodle Np. We show
that its label is strictly less than LWcrpxq. Otherwise, by minimality of i0, α1

would also intersect the polygon Q; by Property (C) it would be parallel to α,
contradicting the fact that it intersects Np. �

Now we notice that simply looking at the matrix ρnpxq is not sufficient to find p:
there might be several integers sharing with p the properties of Claim 6.7. However
let tp1, . . . , pcu be the set of those punctures satisfying conditions of Claim 6.7 and
suppose p1 ă ¨ ¨ ¨ ă pc. To find p, we compute matrices ρnpxa

´1
i0,pι

q for ι “ 1, . . . , c,

until we find MpxpEjqxa
´1
i0,pι

, Npιyqq ă LWcrpxq. This determines p thanks to the
following observation:

Claim 6.8. For ι “ 1, . . . , c the integer pι satisfies:
#

MpxpEjqxa
´1
i0,pι

, Npιyq “ LWcrpxq if pι ă p,

MpxpEjqxa
´1
i0,pι

, Npιyq ă LWcrpxq if pι “ p.

Proof. Let ι P t1, . . . , cu be such that pι ă p. We observe that each maximally
labeled arc segment in pEjqxa

´1
i0,pι

which intersects the noodle Npι corresponds to

a maximally labeled arc segment in pEjqx which intersects Npι (in the same sign);
see Figure 8. This shows:

MpxpEjqxa
´1
i0,pι

, Npιyq “MpxpEjqx,Npιyq “ LWcrpxq.

On the other hand, no arc segment with maximal label in pEjqxa
´1
i0,p

intersects

the noodle Np, so we get the desired equality MpxpEjqxa
´1
i0,p

, Npyq ă LWcrpxq. �
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Figure 8. Indicated by a small circle, maximally labeled arcs
in pEjqx (in pEjqxa

´1
i0,pι

respectively) having intersection with the

noodle Npι (depicted as dashed line).

This achieves the proof of part (ii) of Theorem 6.1. �

Before proving the corollaries of Theorem 6.1, we make some remarks on the
proof.

Remark 6.9. We notice that only Property (C) is needed in the proof of the first
part of Theorem 6.1, as well as in the procedure aiming to determine the last factor
of the dual normal form from the matrix. However in order to use this procedure
in an inductive way and hence determine the whole of the dual normal form, the
simply-nestedness assumption is crucial because Property (C) just concerns the last
factor dr so it does not guarantee that δpd1 ¨ ¨ ¨ dr´1 also has Property (C). Moreover
as we saw, simply-nestedness is often much easier to recognize than Property (C).

Remark 6.10. A statement similar to the first part of Theorem 6.1 concerning the
dual infimum and the minimal degree of the entries of the Burau matrix, although
it sounds quite reasonable, cannot be deduced from our proof. Indeed, the simply-
nestedness assumption as well as the Property (C) do not control intersections of
noodles and arc segments with smallest wall-crossing labeling at all. For the same
argument to work, we need the following analogue of Property (C):

(C1) Let Ndpxq “ δpd1 ¨ ¨ ¨ dr. Express dr as a product of disjoint polygons: dr “
Q1 ¨ ¨ ¨Qb. For each i “ 1, . . . , n´1, any two arc segments α and α1 in xpEiq
labeled SWcrpxq and intersecting a common polygon Q P tQ1, . . . , Qbu are
parallel and have the same orientation.

This makes a good contrast with the case of the LKB representations [IW]; in
that context one can apply key techniques of treating arc segments with the largest
crossing labeling (Bigelow’s key Lemma [Bi2, Lemma 5.1]) to arc segments with
the smallest crossing labeling as well.

We now proceed to show the corollaries to Theorem 6.1.

Corollary 6.11. Let x P B3. Then

(i) supdpxq “Mpρ3pxqq,
(ii) infdpxq “ mpρ3pxqq.

(iii) One can compute the dual normal form of x from the matrix ρ3pxq.
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Proof. We just need to be careful about the assertion (ii) (see Remark 6.10). To
prove (ii), we notice that all dual simple elements are polygons. This observation
and an argument similar to Lemma 6.4 shows that any 3-braid has property (C1).

�

Corollary 6.12. Let x P B4 and Ndpxq “ δpd1 ¨ ¨ ¨ dr. Assume that for all i “
1, . . . , r ´ 1, pdi, di`1q is not in the following list:

"

pa1,2a3,4, a2,4q, pa1,2a3,4, a3,4a2,3q, pa1,2a3,4, a1,2a1,4q,
pa2,3a1,4, a1,3q, pa2,3a1,4, a1,3a2,3q, pa2,3a1,4, a1,3a1,4q

*

Then

(i) supdpxq “Mpρ4pxqq,
(ii) one can compute the dual normal form of x from the matrix ρ4pxq.

In particular, if the dual left normal form of a 4-braid x does not contain a factor
pa1,2a3,4q or pa2,3a1,4q then ρ4pβq ‰ 1.

Proof. It follows from Theorem 6.1 observing that the mentioned pairs are the only
six ones which are left-weighted and not simply-nested. �

Let e : Bn Ñ Z be the abelianization map, given by epσiq “ 1. Since detpρnpxqq “
qepxq, if ρnpxq “ Id then epxq “ 0. By combining this simple constraints, we get a
useful criterion for braids not to lie in the kernel of the Burau representation.

Corollary 6.13. Let x P Bn be a non-trivial braid and Ndpxq “ δpd1 ¨ ¨ ¨ dr. If
there exists r1 ď r such that

(i) The subword xr1 “ δpd1 ¨ ¨ ¨ dr1 is simply-nested,
(ii) r1 ą epdr1`1 ¨ ¨ ¨ drq,

then ρnpxq ‰ 1. Moreover the condition (ii) is always satisfied if r1 ą n´2
n´1r.

Proof. Put E “ epdr1`1 ¨ ¨ ¨ drq. Assume on the contrary that ρnpxq “ 1. Since
epdiq ď pn´2q, we have 0 “ epxq ď pn´1qp`pn´2qr1`E so´p ď 1

n´1 ppn´2qr1`Eq.

On the other hand, by (i)

0 “Mpρnpxqq “Mpρnpδ
pd1 ¨ ¨ ¨ dr1qρnpdr1`1 ¨ ¨ ¨ drqq ěMpρnpδ

pd1 ¨ ¨ ¨ dr1qq “ p` r1

hence r1 ď ´p. Therefore r1 ď 1
n´1 ppn ´ 2qr1 ` Eq, which is equivalent to r1 ď E.

This contradicts (ii). The last assertion follows from the inequality E ď pn´2qpr´
r1q. �

We close this section by looking at some known examples of elements in the
kernel of the Burau representations ρ5 and ρ6.

Consider the braids

x “ rv´1
2 v1σ3v

´1
1 v2, σ3s P B6,

where v1 “ σ1σ
´1
2 σ´1

5 σ4 and v2 “ σ´2
1 σ2σ

2
5σ
´1
4 and

y “ rw´1
1 σ4w1, w

´1
2 σ4σ3σ2σ1σ1σ2σ3σ4w2s P B5,

where w1 “ σ´1
3 σ2σ

2
1σ2σ

3
4σ3σ2 and w2 “ σ´1

4 σ3σ2σ
´2
1 σ2σ

2
1σ

2
2σ1σ

5
4 .
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It is known that ρ5pyq “ Id and ρ6pxq “ Id. The following are dual normal
forms of a conjugate x1 and y1 of x and y, respectively:

Ndpx
1q “ δ´6

6 pa1,6a4,5qpa1,6a2,5qpa1,6a4,6a2,3qpa1,5a4,5a2,3qpa3,6a4,5qpa1,6a2,5a4,5q

pa1,6a3,5qpa1,6a5,6a2,4qpa1,3a5,6qpa2,4a5,6qpa1,3a5,6a4,5qpa2,6a4,5qpa1,3q,

Ndpy
1q “ δ´23

5 pa2,5a4,5qpa1,5a3,5qpa1,4a3,4qpa2,5qpa1,5a2,3qpa1,5a3,4q
2pa1,3qpa2,5a3,4q

pa1,4a3,4qpa1,2a1,4qpa1,2a3,5qpa1,2a1,5a3,4qpa1,5qpa1,2qpa2,3qpa3,4q

pa2,4qpa1,3a4,5qpa1,2a4,5qpa2,3a4,5qpa1,3a4,5qpa1,2a3,5a4,5qpa2,5a3,5q

pa1,3a1,4qpa1,2a1,4qpa1,2a1,3a4,5qpa1,2a4,5qpa2,3a4,5q
2pa2,5qpa1,4a2,3q

pa2,5a3,5qpa1,5a3,5qpa1,5a2,4qpa1,5a4,5a2,3qpa1,5a3,5a2,3q
4pa2,4qpa1,3a4,5q

pa1,2a4,5qpa2,3a4,5qpa1,3a4,5qpa1,2a4,5a3,4q.

See Figure 9 for a pictorial (polygon) expression of Ndpx
1q. One notices that

Ndpx
1q contains many non-simply-nested pairs. Similarly, one observes that Ndpy

1q

also contains a lot of non-simply-nested pairs. These examples and our results on
simply-nested braids suggest that the Burau matrix of a braid x is close to be the
identity matrix only when its dual normal form contains many non-simply nested
pairs.

Figure 9. A pictorial way to represent the dual normal form of
the braid x1 P B6 (the puncture rounded by a circle is the first);
the symbol ˚ represents non simply-nested pairs.
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