Algorithmic consequences of the Linearly Bounded Conjugator Property in braid groups

"Garside theory; state of the art and prospects" - Cap Hornu

Matthieu Calvez

Université Rennes 1/ Universidad de Sevilla

June 1st, 2012

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 1 / 36

- The usual conjugacy algorithm in *B_n* and in Garside groups
- Conjugacy of pseudo-Anosov braids
- 5 The conjugacy problem in B₄

4 A 1

- 2 Geometric properties
- 3 The usual conjugacy algorithm in *B_n* and in Garside groups
- 4 Conjugacy of pseudo-Anosov braids
- 5 The conjugacy problem in *B*₄
- 6 Algorithmic Nielsen-Thurston classification

4 6 1 1 4

We consider the conjugacy problems in the braid groups B_n :

990

(a)

We consider the conjugacy problems in the braid groups B_n :

$$B_n = \left\langle \sigma_1, \sigma_2 \dots, \sigma_{n-1} : \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & |i-j| \ge 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & 1 \le i \le n-2 \end{array} \right\rangle.$$

< 同 > < ∃ >

We consider the conjugacy problems in the braid groups B_n :

$$B_n = \left\langle \sigma_1, \sigma_2 \dots, \sigma_{n-1} : \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & |i-j| \ge 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & 1 \le i \le n-2 \end{array} \right\rangle.$$

• CDP: Decide whether two given words represent conjugate elements.

4 A 1

We consider the conjugacy problems in the braid groups B_n :

$$B_n = \left\langle \sigma_1, \sigma_2 \dots, \sigma_{n-1} : \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & |i-j| \ge 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & 1 \le i \le n-2 \end{array} \right\rangle.$$

- CDP: Decide whether two given words represent conjugate elements.
- CSP: Find a conjugating element if there exists one.

We consider the conjugacy problems in the braid groups B_n :

$$B_n = \left\langle \sigma_1, \sigma_2 \dots, \sigma_{n-1} : \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & |i-j| \ge 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & 1 \le i \le n-2 \end{array} \right\rangle.$$

- CDP: Decide whether two given words represent conjugate elements.
- CSP: Find a conjugating element if there exists one.

Both CDP and CSP are solvable in braid groups (Garside, 1969).

4 A & 4

- Garside's solution to CDP and CSP has high order of complexity, with respect to
 - the braid index n,
 - the length of the input I.

< /□> < 三>

- Garside's solution to CDP and CSP has high order of complexity, with respect to
 - the braid index n,
 - the length of the input I.

• General problem: find a quick solution, i.e. polynomial in *n* and *l*.

< /□> < 三>

- Garside's solution to CDP and CSP has high order of complexity, with respect to
 - the braid index n,
 - the length of the input I.
- General problem: find a quick solution, i.e. polynomial in *n* and *l*.
- Despite of many work in that direction : ElRifai-Morton, Birman-Ko-Lee, Birman-Gebhardt-González-Meneses, Gebhardt, Gebhardt-González-Meneses,...

・ 同 ト ・ ヨ ト ・ ヨ ト

- Garside's solution to CDP and CSP has high order of complexity, with respect to
 - the braid index n,
 - the length of the input I.
- General problem: find a quick solution, i.e. polynomial in *n* and *l*.
- Despite of many work in that direction : ElRifai-Morton, Birman-Ko-Lee, Birman-Gebhardt-González-Meneses, Gebhardt, Gebhardt-González-Meneses,...
- the best known complexity remains exponential.

- Garside's solution to CDP and CSP has high order of complexity, with respect to
 - the braid index n,
 - the length of the input I.
- General problem: find a quick solution, i.e. polynomial in *n* and *l*.
- Despite of many work in that direction : ElRifai-Morton, Birman-Ko-Lee, Birman-Gebhardt-González-Meneses, Gebhardt, Gebhardt-González-Meneses,...
- the best known complexity remains exponential.
- In this talk, *n* will be fixed and *l* will be the only parameter.

A fast (polynomial) solution to CDP/CSP is known only in

A fast (polynomial) solution to CDP/CSP is known only in

• $B_2 \cong \mathbb{Z}$,

Te - 14

4 6 1 1 4

A fast (polynomial) solution to CDP/CSP is known only in

- $B_2 \cong \mathbb{Z}$,
- *B*₃.

・ 同 ト ・ ヨ ト ・ ヨ ト

A fast (polynomial) solution to CDP/CSP is known only in

- $B_2 \cong \mathbb{Z}$,
- *B*₃.

Theorem (C., Wiest)

There is an algorithm for solving the CDP and CSP in the 4-strand braid group B_4 whose complexity depends cubically on the length of the input.

- 3 The usual conjugacy algorithm in *B_n* and in Garside groups
- 4 Conjugacy of pseudo-Anosov braids
- 5 The conjugacy problem in *B*₄
- 6 Algorithmic Nielsen-Thurston classification

A 1

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 8 / 36

₽

990

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Geometric properties

B_n as a Mapping Class Group

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 8 / 36

э

990

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 8 / 36

э

990

イロト イヨト イヨト イヨト

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

э

A D F A B F A B F A B F

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$$

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$$

э

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 8 / 36

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

э

A D F A B F A B F A B F

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

$B_n \cong \mathcal{MCG}(\mathbb{D}_n, \partial \mathbb{D}_n).$

э

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Theorem (Thurston, 1980's)

- Any braid $x \in B_n$ is either
 - periodic,
 - pseudo-Anosov,
 - or reducible non-periodic.

ъ

Theorem (Thurston, 1980's)

- Any braid $x \in B_n$ is either
 - periodic,
 - pseudo-Anosov,
 - or reducible non-periodic.

Reducible braids can be reduced in smaller "irreducible" pieces:

Theorem (Thurston, 1980's)

- Any braid $x \in B_n$ is either
 - periodic,
 - pseudo-Anosov,
 - or reducible non-periodic.

Reducible braids can be reduced in smaller "irreducible" pieces: braids with less strands which are periodic or pA.

Theorem (Thurston, 1980's)

- Any braid $x \in B_n$ is either
 - periodic,
 - pseudo-Anosov,
 - or reducible non-periodic.

Reducible braids can be reduced in smaller "irreducible" pieces: braids with less strands which are periodic or pA.

The Nielsen-Thurston type is invariant under conjugation and taking powers.

∃ ► 4

Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

14 E 5

< □ > < 🗇 >

Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

First, one needs to be able to decide quickly the Nielsen-Thurston type of a given braid

モトイモト

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

First, one needs to be able to decide quickly the Nielsen-Thurston type of a given braid and for reducible braids, to find explicitly the decomposition into irreducible pieces.

E > 4 E >

Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

First, one needs to be able to decide quickly the Nielsen-Thurston type of a given braid and for reducible braids, to find explicitly the decomposition into irreducible pieces.

 In the periodic case, CDP and CSP were solved in O(l³n² log n) by Birman, Gebhardt and González-Meneses.

Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

First, one needs to be able to decide quickly the Nielsen-Thurston type of a given braid and for reducible braids, to find explicitly the decomposition into irreducible pieces.

- In the periodic case, CDP and CSP were solved in O(l³n² log n) by Birman, Gebhardt and González-Meneses.
- The pseudo-Anosov case is the one we will focus on.

(a)

Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

First, one needs to be able to decide quickly the Nielsen-Thurston type of a given braid and for reducible braids, to find explicitly the decomposition into irreducible pieces.

- In the periodic case, CDP and CSP were solved in O(l³n² log n) by Birman, Gebhardt and González-Meneses.
- The pseudo-Anosov case is the one we will focus on.
- In the reducible case, one can try to solve CDP and CSP by gluing "irreducible" pieces together.

The Linearly Bounded Conjugator Property

Theorem (Masur-Minsky, 2000)

Let n be a positive integer. Choose a generating set \mathcal{G}_n for B_n . There exists a constant $C(\mathcal{G}_n)$ such that for any pair $x, y \in B_n$ of pseudo-Anosov conjugate braids, one can find a conjugator u between them satisfying

 $|u|_{\mathcal{G}_n} \leq C(\mathcal{G}_n) \cdot (|x|_{\mathcal{G}_n} + |y|_{\mathcal{G}_n}).$

M. Calvez (Rennes1-Sevilla)

The Linearly Bounded Conjugator Property

Theorem (Masur-Minsky, 2000)

Let n be a positive integer. Choose a generating set \mathcal{G}_n for B_n . There exists a constant $C(\mathcal{G}_n)$ such that for any pair $x, y \in B_n$ of pseudo-Anosov conjugate braids, one can find a conjugator u between them satisfying

 $|u|_{\mathcal{G}_n} \leq C(\mathcal{G}_n) \cdot (|x|_{\mathcal{G}_n} + |y|_{\mathcal{G}_n}).$

Extended by Jing Tao (2011) to all Nielsen-Thurston types.

The Linearly Bounded Conjugator Property

Theorem (Masur-Minsky, 2000)

Let n be a positive integer. Choose a generating set \mathcal{G}_n for B_n . There exists a constant $C(\mathcal{G}_n)$ such that for any pair $x, y \in B_n$ of pseudo-Anosov conjugate braids, one can find a conjugator u between them satisfying

 $|\boldsymbol{u}|_{\mathcal{G}_n} \leqslant \boldsymbol{C}(\mathcal{G}_n) \cdot (|\boldsymbol{x}|_{\mathcal{G}_n} + |\boldsymbol{y}|_{\mathcal{G}_n}).$

Extended by Jing Tao (2011) to all Nielsen-Thurston types.

The constant C is NOT explicitly known.

∃ ► < ∃ ►</p>

- 2 Geometric properties
- 3 The usual conjugacy algorithm in *B_n* and in Garside groups
- 4 Conjugacy of pseudo-Anosov braids
- 5 The conjugacy problem in *B*₄
- 6 Algorithmic Nielsen-Thurston classification

Solving CSP/CDP in Garside groups

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 13 / 36

3

990

∃ ► < ∃ ►</p>

The usual conjugacy algorithm in B_n and in Garside groups

Solving CSP/CDP in Garside groups

Use of the Garside/ElRifai-Morton/Thurston normal form (greedy normal form).

E > 4 E >

Solving CSP/CDP in Garside groups

Use of the Garside/EIRifai-Morton/Thurston normal form (greedy normal form).

Define a special kind of conjugation, called "cyclic sliding" and denoted \mathfrak{s} (Gebhardt & González-Meneses, 2008).

(a)

The cyclic sliding operation \$\varsist\$

∃ ► < ∃ ►</p>

The cyclic sliding operation \$\varsist\$

• simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,

モトイモト

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,

モトイモト

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

モトイモト

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

х

프 + + 프 +

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

x ----->

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

 $x \longrightarrow \mathfrak{s}(x)$

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

$$x \longrightarrow \mathfrak{s}(x) \longrightarrow \mathfrak{s}^2(x)$$

프 + + 프 +

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

$$x \longrightarrow \mathfrak{s}(x) \longrightarrow \mathfrak{s}^2(x) \longrightarrow \mathfrak{s}^3(x)$$

프 + + 프 +

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

$$x \longrightarrow \mathfrak{s}(x) \longrightarrow \mathfrak{s}^2(x) \longrightarrow \mathfrak{s}^3(x) \longrightarrow \cdots$$

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

$x \longrightarrow \mathfrak{s}(x) \longrightarrow \mathfrak{s}^2(x) \longrightarrow \mathfrak{s}^3(x) \longrightarrow \cdots \longrightarrow \cdots$

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

イロト イポト イラト イラト 二日

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

프 + + 프 +

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

The cyclic sliding operation \$\varsist\$

- simplifies normal forms: $length(\mathfrak{s}(x)) \leq length(x)$,
- is eventually periodic,
- has a small algorithmic cost.

The set $\{y \in x^{B_n} | \exists k \in \mathbb{N}^* | \mathfrak{s}^k(y) = y\}$ is called the set of sliding circuits of *x*, denoted SC(x).

프 + + 프 +

The set $\{y \in x^{B_n} | \exists k \in \mathbb{N}^* | \mathfrak{s}^k(y) = y\}$ is called the set of sliding circuits of *x*, denoted SC(x).

The set $\{y \in x^{B_n} | \exists k \in \mathbb{N}^* | \mathfrak{s}^k(y) = y\}$ is called the set of sliding circuits of *x*, denoted SC(x).

June 1st, 2012 15 / 36

The set $\{y \in x^{B_n} | \exists k \in \mathbb{N}^* | \mathfrak{s}^k(y) = y\}$ is called the set of sliding circuits of *x*, denoted SC(x).

LBC Property and algorithms in Bn

June 1st, 2012 15 / 36

Some properties of SC(x)

SC(x) is a finite set,

э

∃ ► < ∃ ►</p>

Some properties of SC(x)

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.

(a)

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.
- *SC*(*x*) can be endowed with the structure of a directed connected graph (with edges given by "minimal conjugations").

\Rightarrow this allows to solve CDP and CSP.

(a)

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.
- *SC*(*x*) can be endowed with the structure of a directed connected graph (with edges given by "minimal conjugations").

\Rightarrow this allows to solve CDP and CSP.

×.

V

(a)

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.
- *SC*(*x*) can be endowed with the structure of a directed connected graph (with edges given by "minimal conjugations").

\Rightarrow this allows to solve CDP and CSP.

V

• □ ▶ • @ ▶ • E ▶ • E ▶

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.
- *SC*(*x*) can be endowed with the structure of a directed connected graph (with edges given by "minimal conjugations").

\Rightarrow this allows to solve CDP and CSP.

프 () (프 (

V

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.
- *SC*(*x*) can be endowed with the structure of a directed connected graph (with edges given by "minimal conjugations").

\Rightarrow this allows to solve CDP and CSP.

- SC(x) is a finite set,
- for any $x, y \in B_n$, x and y are conjugate iff SC(x) = SC(y). If not, $SC(x) \cap SC(y) = \emptyset$.
- *SC*(*x*) can be endowed with the structure of a directed connected graph (with edges given by "minimal conjugations").

\Rightarrow this allows to solve CDP and CSP.

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 17 / 36

E

DQC

∃ ► < ∃ ►</p>

(1) Bound the size of SC(x)?

э

DQC

ヨト・モヨト

• • • • • • • • • • • •

- (1) Bound the size of SC(x)?
- (2) Bound T (in terms of n and I)?

ヨト・モート

(1) Bound the size of SC(x)?

(2) Bound T (in terms of n and I)?

i.e. the number of iterations of s needed before obtaining an element of SC

・ 何 ト ・ ヨ ト ・ ヨ

- (1) Bound the size of SC(x)?
- (2) Bound T (in terms of n and I)? i.e. the number of iterations of s needed before obtaining an element of SC

Hard to answer in general, a reason why we use the N.-T. classification.

・ 同 ト ・ ヨ ト ・ ヨ ト

(1) Bound the size of SC(x)?

(2) Bound T (in terms of n and I)? i.e. the number of iterations of s needed before obtaining an element of SC

Hard to answer in general, a reason why we use the N.-T. classification.

We want to answer in the pseudo-Anosov case.

A D A D A D A

Rigid braids are a special kind of element defined in terms of normal forms.

モトイモト

Rigid braids are a special kind of element defined in terms of normal forms.

モトイモト

Rigid braids are a special kind of element defined in terms of normal forms.

They satisfy:

モトイモト

Rigid braids are a special kind of element defined in terms of normal forms.

They satisfy:

• If x is rigid, then $\mathfrak{s}(x) = x$,

モトイモト

Rigid braids are a special kind of element defined in terms of normal forms.

They satisfy:

- If x is rigid, then $\mathfrak{s}(x) = x$,
- If x is conjugate to a rigid element then (Gebhardt, G.-Meneses)

 $SC(x) = \{ rigid conjugates of x \}.$

• □ ▶ • @ ▶ • E ▶ • E ▶

Rigid braids are a special kind of element defined in terms of normal forms.

They satisfy:

- If x is rigid, then $\mathfrak{s}(x) = x$,
- If x is conjugate to a rigid element then (Gebhardt, G.-Meneses)

 $SC(x) = \{ rigid conjugates of x \}.$

Moreover, rigidity is easy to check (just compute the normal form).

イロト イポト イヨト イヨト 二日

Rigid braids are a special kind of element defined in terms of normal forms.

They satisfy:

- If x is rigid, then $\mathfrak{s}(x) = x$,
- If x is conjugate to a rigid element then (Gebhardt, G.-Meneses)

 $SC(x) = \{ rigid conjugates of x \}.$

Moreover, rigidity is easy to check (just compute the normal form).

In general, the *SC*'s of rigid elements have rather simple structure, although some difficulties may appear...

Introduction

- 2 Geometric properties
- The usual conjugacy algorithm in B_n and in Garside groups

Conjugacy of pseudo-Anosov braids

- 5 The conjugacy problem in B₄
- 6 Algorithmic Nielsen-Thurston classification

June 1st. 2012 20 / 36

3

DQC

프 () (프 (

Theorem

If there exists a family of polynomials $P_n(I)$ s.t. for any pA rigid *n*-braid $x, \#SC(x) \leq P_n(length(x))$

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 20 / 36

Theorem

If there exists a family of polynomials $P_n(I)$ s.t. for any pA rigid *n*-braid $x, \#SC(x) \leq P_n(length(x))$

then

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

(Ξ ▶ < Ξ ▶ Ξ · つ Q ⊂ June 1st. 2012 20 / 36

4 A 1

Theorem

If there exists a family of polynomials $P_n(I)$ s.t. for any pA rigid *n*-braid x, $\#SC(x) \leq P_n(length(x))$

then

there is an algorithm for solving CDP/CSP in the case of pA braids, whose complexity is polynomial in the length for any fixed n.

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 20 / 36

A D b A A b

Theorem

If there exists a family of polynomials $P_n(I)$ s.t. for any pA rigid *n*-braid x, $\#SC(x) \leq P_n(length(x))$

then

there is an algorithm for solving CDP/CSP in the case of pA braids, whose complexity is polynomial in the length for any fixed n.

In general, no polynomial bound (in *I* and *n*) on #SC, for pA rigid braids (Prasolov).

(a)

Proof

Assumption \implies CDP/CSP polynomial (w.r.t. *I* for any fixed *n*) for rigid pA braids.

3

DQC

Proof

Assumption \implies CDP/CSP polynomial (w.r.t. *I* for any fixed *n*) for rigid pA braids.

Lemma

Given two pseudo-Anosov braids x and y, we can produce effectively \bar{x} , \bar{y} pA rigid s.t.

- $x \sim y \iff \bar{x} \sim \bar{y}$,
- if so, the knowledge of a conjugator x̄ → ȳ implies the knowledge of a conjugator x → y,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)).$

3

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid conjugate. Then T_x is bounded above by $C \cdot length(x)$. In particular, $\mathfrak{s}^{C \cdot length(x)}(x)$ is rigid.

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid conjugate. Then T_x is bounded above by $C \cdot length(x)$. In particular, $\mathfrak{s}^{C \cdot length(x)}(x)$ is rigid.

Idea of proof:

Theorem (Gebhardt, G.-Meneses): If x has some rigid conjugate, then the shortest conjugating element from x to a rigid is to iterate cyclic sliding.

프 () (프 (

4 6 1 1 4

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid conjugate. Then T_x is bounded above by $C \cdot length(x)$. In particular, $\mathfrak{s}^{C \cdot length(x)}(x)$ is rigid.

Idea of proof:

Theorem (Gebhardt, G.-Meneses): If x has some rigid conjugate, then the shortest conjugating element from x to a rigid is to iterate cyclic sliding.

By Masur-Minsky, its length T is bounded by $C \cdot length(x)$.

(a)

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid conjugate. Then T_x is bounded above by $C \cdot length(x)$. In particular, $\mathfrak{s}^{C \cdot length(x)}(x)$ is rigid.

Idea of proof:

Theorem (Gebhardt, G.-Meneses): If x has some rigid conjugate, then the shortest conjugating element from x to a rigid is to iterate cyclic sliding.

By Masur-Minsky, its length *T* is bounded by $C \cdot length(x)$.

This gives a non-explicit linear bound on T above in the pA rigid case.

(a)

Passing to powers

We shall also use:

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 23 / 36

1

DQC

∃ ► < ∃ ►</p>

Passing to powers

We shall also use:

Theorem (Birman, Gebhardt, G.-Meneses)

For fixed *n*, there exists a (explicit) polynomial K(n) s.t. for any pA *n*-braid *x*, there exists a power $m_x \leq K(n)$ with x^{m_x} conjugate to a rigid.

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

< ■ ▶ < ■ ▶ ■ のへの June 1st. 2012 23/36

Main step

Theorem

There exists an algorithm of complexity $O(l^2)$ with:

- INPUT: $x, y \in B_n$ pA (of length at most I),
- OUTPUT: $s \in \mathbb{N}$, $\bar{x}, \bar{y}, \tilde{x}, \tilde{y} \in B_n$ s.t.

$$x^{s}$$
 $\xrightarrow{\widetilde{x}}$ \overline{x} y^{s} $\overline{\widetilde{y}}$ \overline{y}

with \bar{x} , \bar{y} rigid, s bounded independently of length(x), length(y).

ヨト・モヨト

Proof of the first lemma

• \bar{x} , \bar{y} pA rigid,

э

DQC

A D F A B F A B F A B F

Proof of the first lemma

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$

3

프 () (프 (

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$
- $x \sim y \iff x^s \sim y^s \iff \bar{x} \sim \bar{y}$.

イロト イポト イヨト イヨト 二日

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$
- $x \sim y \iff x^s \sim y^s \iff \bar{x} \sim \bar{y}$.

By unicity of roots of pA (G.-Meneses),

3

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$
- $x \sim y \iff x^s \sim y^s \iff \bar{x} \sim \bar{y}$.

By unicity of roots of pA (G.-Meneses),

 \Leftrightarrow

3

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$

•
$$x \sim y \iff x^s \sim y^s \iff \bar{x} \sim \bar{y}$$
.

By unicity of roots of pA (G.-Meneses),

$$x^{s} \xrightarrow{\beta} y^{s} \Leftrightarrow$$

3

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$

•
$$x \sim y \iff x^s \sim y^s \iff \bar{x} \sim \bar{y}.$$

By unicity of roots of pA (G.-Meneses),

- \bar{x} , \bar{y} pA rigid,
- $length(\bar{x}) = O(length(x)), length(\bar{y}) = O(length(y)),$

•
$$x \sim y \iff x^s \sim y^s \iff \bar{x} \sim \bar{y}$$
.

By unicity of roots of pA (G.-Meneses),

Finally, the previous algorithm also gives \tilde{x} and \tilde{y} s. t.

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 26 / 36

3

DQC

∃ ► < ∃ ►</p>

х

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 26 / 36

э

DQC

∃ ► < ∃ ►</p>

x

 x^2

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 26 / 36

э

DQC

ヨト・モート

x x^2 x^3

э

DQC

ヨト・モート

э

DQC

• • • • • • • • • • •

M. Calvez (Rennes1-Sevilla)

э

DQC

• • • • • • • • • • •

э

990

ヨトィヨト

• • • • • • • • • •

 $x^{K(n)}$

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 26 / 36

E

990

ヨト・モート

 $x^{K(n)}$

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 26 / 36

э

990

990

5900

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

5900

5900

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 26 / 36

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 26 / 36

June 1st. 2012 26 / 36

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 26 / 36

Linear (not explicit) number of iterations of cyclic slidings (w.r.t. /).

Linear (not explicit) number of iterations of cyclic slidings (w.r.t. *I*).
Call x' = s^T(x^{m_x}). Do the same for y for obtaining y'.

•

- Linear (not explicit) number of iterations of cyclic slidings (w.r.t. *I*).
- Call $x' = \mathfrak{s}^T(x^{m_x})$. Do the same for *y* for obtaining *y'*.
- Take $s = lcm(m_x, m_y)$ and $\bar{x} = x' \frac{s}{m_x}$, $\bar{y} = y' \frac{s}{m_y}$.

- Linear (not explicit) number of iterations of cyclic slidings (w.r.t. *I*).
- Call $x' = \mathfrak{s}^T(x^{m_x})$. Do the same for *y* for obtaining *y'*.
- Take $s = lcm(m_x, m_y)$ and $\bar{x} = x' \frac{s}{m_x}$, $\bar{y} = y' \frac{s}{m_y}$.

Introduction

- 2 Geometric properties
- 3 The usual conjugacy algorithm in *B_n* and in Garside groups
- Conjugacy of pseudo-Anosov braids
- 5 The conjugacy problem in B₄
 - Algorithmic Nielsen-Thurston classification

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st, 2012 28 / 36

₽

990

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

• The problem of deciding the Nielsen-Thurston type of a given 4-strand braid has a quadratic solution (C.-Wiest).

•

Moreover:

∃ ► < ∃ ►</p>

4 6 1 1 4

- The problem of deciding the Nielsen-Thurston type of a given 4-strand braid has a quadratic solution (C.-Wiest).
- For 4-strands *reducible* braids, CDP and CSP are solvable by a fast algorithm (C.-Wiest).

Moreover:

Theorem (C., Wiest)

Let $x \in B_4$ be a pseudo-Anosov rigid braid. Then #SC(x) is bounded above by $O(l^2)$.

- The problem of deciding the Nielsen-Thurston type of a given 4-strand braid has a quadratic solution (C.-Wiest).
- For 4-strands *reducible* braids, CDP and CSP are solvable by a fast algorithm (C.-Wiest).

Moreover:

Theorem (C., Wiest)

Let $x \in B_4$ be a pseudo-Anosov rigid braid. Then #SC(x) is bounded above by $O(l^2)$.

Corollary

There is an algorithm of complexity $O(l^3)$ solving CDP/CSP in B₄.

(日)

Structure of SC's of rigid elements

Remark: We use the Birman-Ko-Lee structure.

ヨト・モート

• • • • • • • • • • •

Structure of SC's of rigid elements

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

モトイモト

4 A 1

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

The vertices are the elements of *SC*, the edges some "minimal conjugators".

モトィモト

4 6 1 1 4

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

The vertices are the elements of *SC*, the edges some "minimal conjugators".

In the rigid case, results by Gebhardt about the "transport" allow to consider this graph modulo conjugation by δ and cycling.

Sar

E > 4 E >

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

The vertices are the elements of *SC*, the edges some "minimal conjugators".

In the rigid case, results by Gebhardt about the "transport" allow to consider this graph modulo conjugation by δ and cycling.

We obtain the quotient graph $SC_{\sim}(x)$:

3

• □ ▶ • @ ▶ • E ▶ • E ▶

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

The vertices are the elements of *SC*, the edges some "minimal conjugators".

In the rigid case, results by Gebhardt about the "transport" allow to consider this graph modulo conjugation by δ and cycling.

We obtain the quotient graph $SC_{\sim}(x)$:

each vertex corresponds to an equivalence class containing
 4 · length(x) elements of SC(x)

イロト イポト イヨト イヨト 二日

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

The vertices are the elements of *SC*, the edges some "minimal conjugators".

In the rigid case, results by Gebhardt about the "transport" allow to consider this graph modulo conjugation by δ and cycling.

We obtain the quotient graph $SC_{\sim}(x)$:

- each vertex corresponds to an equivalence class containing
 4 · length(x) elements of SC(x)
- the edges still correspond to "minimal conjugators".

イロト イポト イヨト イヨト 二日

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected directed graph.

The vertices are the elements of *SC*, the edges some "minimal conjugators".

In the rigid case, results by Gebhardt about the "transport" allow to consider this graph modulo conjugation by δ and cycling.

We obtain the quotient graph $SC_{\sim}(x)$:

- each vertex corresponds to an equivalence class containing
 4 · length(x) elements of SC(x)
- the edges still correspond to "minimal conjugators".

We need to bound linearly (w.r.t. the length) the number of vertices of $SC_{\sim}(x)$.

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

∃ ► < ∃ ►</p>

4 6 1 1 4

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

Thanks to the simplicity of the lattice of simple elements in the Birman-Ko-Lee structure of B_4 , one can show that this quotient graph $SC_{\sim}(x)$ has one of the following forms.

LBC Property and algorithms in Bn

June 1st. 2012 30 / 36

Bounding the line

As edges are given by minimal conjugators we can use again Masur-Minsky's bound: the length of the line is linearly bounded by the length of the braid we started with.

Introduction

- 2 Geometric properties
- 3 The usual conjugacy algorithm in *B_n* and in Garside groups
- 4 Conjugacy of pseudo-Anosov braids
- 5 The conjugacy problem in *B*₄

Another (not explicit) polynomial-time algorithm

∃ ► < ∃ ►</p>

• • • • • • • • • •

Another (not explicit) polynomial-time algorithm

Theorem (C.)

There exists an algorithm which decides the Nielsen-Thurston type of a given braid on n strands and of length I in time $O(I^3)$ for each fixed n.

M. Calvez (Rennes1-Sevilla)

LBC Property and algorithms in Bn

June 1st. 2012 33 / 36

1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).

∃ ► < ∃ ►</p>

• • • • • • • • • •

- 1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).
- Pseudo-Anosov have small (≤ K(n)) power conjugated to a rigid braid.

モトイモト

- 1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).
- Pseudo-Anosov have small (≤ K(n)) power conjugated to a rigid braid.
- Given x ∈ B_n non-periodic, for any i = 1,..., K(n), apply s iteratively C · length(xⁱ) times to xⁱ.

- 1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).
- Pseudo-Anosov have small (≤ K(n)) power conjugated to a rigid braid.
- 3) Given $x \in B_n$ non-periodic, for any i = 1, ..., K(n), apply \mathfrak{s} iteratively $C \cdot length(x^i)$ times to x^i .
- 4) If no rigid element is found, then x is reducible.

- 1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).
- Pseudo-Anosov have small (≤ K(n)) power conjugated to a rigid braid.
- Given x ∈ B_n non-periodic, for any i = 1,..., K(n), apply s iteratively C · length(xⁱ) times to xⁱ.
- 4) If no rigid element is found, then *x* is reducible.
- Otherwise, for the rigid element x obtained, one can test in an effective way whether it is reducible or pseudo-Anosov (G.-Meneses, Wiest).

3

Questions

- Look at the geometry of the curve complex associated to the *n*-times punctured disk and find the value of *C*.
- Does LBC hold in Garside groups?

モンイモン

Thank you

¹This picture by courtesy of Marta Aguilera.

1

LBC Property and algorithms in Bn

June 1st, 2012 36 / 36