
Algorithmic consequences of the Linearly Bounded
Conjugator Property in braid groups

“Garside theory; state of the art and prospects” - Cap Hornu

Matthieu Calvez

Université Rennes 1/ Universidad de Sevilla

June 1st, 2012

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 1 / 36



1 Introduction

2 Geometric properties

3 The usual conjugacy algorithm in Bn and in Garside groups

4 Conjugacy of pseudo-Anosov braids

5 The conjugacy problem in B4

6 Algorithmic Nielsen-Thurston classification

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 2 / 36



Introduction

1 Introduction

2 Geometric properties

3 The usual conjugacy algorithm in Bn and in Garside groups

4 Conjugacy of pseudo-Anosov braids

5 The conjugacy problem in B4

6 Algorithmic Nielsen-Thurston classification

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 3 / 36



Introduction

Introduction

We consider the conjugacy problems in the braid groups Bn:

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 4 / 36



Introduction

Introduction

We consider the conjugacy problems in the braid groups Bn:

Bn =

〈
σ1, σ2 . . . , σn−1 :

σiσj = σjσi |i − j | > 2
σiσi+1σi = σi+1σiσi+1 1 6 i 6 n − 2

〉
.

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 4 / 36



Introduction

Introduction

We consider the conjugacy problems in the braid groups Bn:

Bn =

〈
σ1, σ2 . . . , σn−1 :

σiσj = σjσi |i − j | > 2
σiσi+1σi = σi+1σiσi+1 1 6 i 6 n − 2

〉
.

CDP: Decide whether two given words represent conjugate
elements.

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 4 / 36



Introduction

Introduction

We consider the conjugacy problems in the braid groups Bn:

Bn =

〈
σ1, σ2 . . . , σn−1 :

σiσj = σjσi |i − j | > 2
σiσi+1σi = σi+1σiσi+1 1 6 i 6 n − 2

〉
.

CDP: Decide whether two given words represent conjugate
elements.

CSP: Find a conjugating element if there exists one.

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 4 / 36



Introduction

Introduction

We consider the conjugacy problems in the braid groups Bn:

Bn =

〈
σ1, σ2 . . . , σn−1 :

σiσj = σjσi |i − j | > 2
σiσi+1σi = σi+1σiσi+1 1 6 i 6 n − 2

〉
.

CDP: Decide whether two given words represent conjugate
elements.

CSP: Find a conjugating element if there exists one.

Both CDP and CSP are solvable in braid groups (Garside, 1969).
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Search for a quick solution
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with respect to
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the length of the input l.
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Garside’s solution to CDP and CSP has high order of complexity,
with respect to

the braid index n,
the length of the input l.

General problem: find a quick solution, i.e. polynomial in n and l .

Despite of many work in that direction : ElRifai-Morton,
Birman-Ko-Lee, Birman-Gebhardt-González-Meneses, Gebhardt,
Gebhardt-González-Meneses,...

the best known complexity remains exponential.

In this talk, n will be fixed and l will be the only parameter.
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Introduction

Search for a quick solution

A fast (polynomial) solution to CDP/CSP is known only in

B2
∼= Z,

B3.

Theorem (C., Wiest)

There is an algorithm for solving the CDP and CSP in the 4-strand
braid group B4 whose complexity depends cubically on the length of
the input.
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Geometric properties

The Nielsen-Thurston trichotomy

Theorem (Thurston, 1980’s)

Any braid x ∈ Bn is either

periodic,

pseudo-Anosov,

or reducible non-periodic.
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The Nielsen-Thurston trichotomy

Theorem (Thurston, 1980’s)

Any braid x ∈ Bn is either

periodic,

pseudo-Anosov,

or reducible non-periodic.

Reducible braids can be reduced in smaller “irreducible” pieces:
braids with less strands which are periodic or pA.

The Nielsen-Thurston type is invariant under conjugation and taking
powers.
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Use of N.-T. classification in the conjugacy problem

Idea: try to solve CDP and CSP in each of the particular types.

First, one needs to be able to decide quickly the Nielsen-Thurston type
of a given braid
and for reducible braids, to find explicitly the decomposition into
irreducible pieces.

In the periodic case, CDP and CSP were solved in O(l3n2 log n)
by Birman, Gebhardt and González-Meneses.

The pseudo-Anosov case is the one we will focus on.

In the reducible case, one can try to solve CDP and CSP by gluing
“irreducible” pieces together.
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Geometric properties

The Linearly Bounded Conjugator Property

Theorem (Masur-Minsky, 2000)

Let n be a positive integer. Choose a generating set Gn for Bn. There
exists a constant C(Gn) such that for any pair x , y ∈ Bn of
pseudo-Anosov conjugate braids, one can find a conjugator u between
them satisfying

|u|Gn 6 C(Gn) · (|x |Gn + |y |Gn).
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The Linearly Bounded Conjugator Property

Theorem (Masur-Minsky, 2000)

Let n be a positive integer. Choose a generating set Gn for Bn. There
exists a constant C(Gn) such that for any pair x , y ∈ Bn of
pseudo-Anosov conjugate braids, one can find a conjugator u between
them satisfying

|u|Gn 6 C(Gn) · (|x |Gn + |y |Gn).

Extended by Jing Tao (2011) to all Nielsen-Thurston types.

The constant C is NOT explicitly known.
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The usual conjugacy algorithm in Bn and in Garside groups

Solving CSP/CDP in Garside groups

Use of the Garside/ElRifai-Morton/Thurston normal form (greedy
normal form).

Define a special kind of conjugation, called “cyclic sliding” and
denoted s (Gebhardt & González-Meneses, 2008).
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The usual conjugacy algorithm in Bn and in Garside groups

Some properties of the cyclic sliding operation

The cyclic sliding operation s
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The usual conjugacy algorithm in Bn and in Garside groups

The set of sliding circuits

The set {y ∈ xBn | ∃k ∈ N
∗ | sk (y) = y} is called the set of sliding

circuits of x , denoted SC(x).
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Two crucial questions

(1) Bound the size of SC(x)?

(2) Bound T (in terms of n and l)?
i.e. the number of iterations of s needed before obtaining an element of SC

Hard to answer in general, a reason why we use the N.-T.
classification.

We want to answer in the pseudo-Anosov case.
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The usual conjugacy algorithm in Bn and in Garside groups
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Rigid braids are a special kind of element defined in terms of normal
forms.
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The special case of rigid elements

Rigid braids are a special kind of element defined in terms of normal
forms.

They satisfy:

If x is rigid, then s(x) = x ,

If x is conjugate to a rigid element then (Gebhardt, G.-Meneses)

SC(x) = {rigid conjugates of x}.

Moreover, rigidity is easy to check (just compute the normal form).

In general, the SC’s of rigid elements have rather simple structure,
although some difficulties may appear...
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A (partial) solution to CDP/CSP for pA braids
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Theorem

If there exists a family of polynomials Pn(l) s.t. for any pA rigid
n-braid x, #SC(x) 6 Pn(length(x))

then

there is an algorithm for solving CDP/CSP in the case of pA braids,
whose complexity is polynomial in the length for any fixed n.
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A (partial) solution to CDP/CSP for pA braids

Theorem

If there exists a family of polynomials Pn(l) s.t. for any pA rigid
n-braid x, #SC(x) 6 Pn(length(x))

then

there is an algorithm for solving CDP/CSP in the case of pA braids,
whose complexity is polynomial in the length for any fixed n.

In general, no polynomial bound (in l and n) on #SC, for pA rigid
braids (Prasolov).
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Conjugacy of pseudo-Anosov braids

Proof

Assumption =⇒ CDP/CSP polynomial (w.r.t. l for any fixed n) for rigid
pA braids.
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Conjugacy of pseudo-Anosov braids

Proof

Assumption =⇒ CDP/CSP polynomial (w.r.t. l for any fixed n) for rigid
pA braids.

Lemma

Given two pseudo-Anosov braids x and y, we can produce effectively
x̄ , ȳ pA rigid s.t.

x ∼ y ⇐⇒ x̄ ∼ ȳ ,

if so, the knowledge of a conjugator x̄ −→ ȳ implies the
knowledge of a conjugator x −→ y,

length(x̄) = O(length(x)), length(ȳ) = O(length(y)).
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Conjugacy of pseudo-Anosov braids

The use of the linear bound

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid
conjugate. Then Tx is bounded above by C · length(x). In particular,
s

C·length(x)(x) is rigid.
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Idea of proof:
Theorem (Gebhardt, G.-Meneses): If x has some rigid conjugate,
then the shortest conjugating element from x to a rigid is to iterate
cyclic sliding.

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 22 / 36



Conjugacy of pseudo-Anosov braids

The use of the linear bound

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid
conjugate. Then Tx is bounded above by C · length(x). In particular,
s

C·length(x)(x) is rigid.

Idea of proof:
Theorem (Gebhardt, G.-Meneses): If x has some rigid conjugate,
then the shortest conjugating element from x to a rigid is to iterate
cyclic sliding.

By Masur-Minsky, its length T is bounded by C · length(x). �

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 22 / 36



Conjugacy of pseudo-Anosov braids

The use of the linear bound

Theorem

Let x be a pseudo-Anosov braid. Suppose that x has some rigid
conjugate. Then Tx is bounded above by C · length(x). In particular,
s

C·length(x)(x) is rigid.

Idea of proof:
Theorem (Gebhardt, G.-Meneses): If x has some rigid conjugate,
then the shortest conjugating element from x to a rigid is to iterate
cyclic sliding.

By Masur-Minsky, its length T is bounded by C · length(x). �

This gives a non-explicit linear bound on T above in the pA rigid case.
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Conjugacy of pseudo-Anosov braids

Passing to powers

We shall also use:
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Conjugacy of pseudo-Anosov braids

Passing to powers

We shall also use:

Theorem (Birman, Gebhardt, G.-Meneses)

For fixed n, there exists a (explicit) polynomial K (n) s.t. for any pA
n-braid x, there exists a power mx 6 K (n) with xmx conjugate to a rigid.
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Conjugacy of pseudo-Anosov braids

Main step

Theorem

There exists an algorithm of complexity O(l2) with:

INPUT: x , y ∈ Bn pA (of length at most l),

OUTPUT: s ∈ N, x̄ , ȳ , x̃ , ỹ ∈ Bn s.t.

with x̄ , ȳ rigid, s bounded independently of length(x), length(y).
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Conjugacy of pseudo-Anosov braids

Proof of the first lemma

x̄ , ȳ pA rigid,
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Conjugacy of pseudo-Anosov braids

Proof of the first lemma

x̄ , ȳ pA rigid,
length(x̄) = O(length(x)), length(ȳ) = O(length(y)),
x ∼ y ⇐⇒ xs ∼ ys ⇐⇒ x̄ ∼ ȳ .

By unicity of roots of pA (G.-Meneses),

Finally, the previous algorithm also gives x̃ and ỹ s. t.

Z
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Conjugacy of pseudo-Anosov braids

Description of the latter algorithm
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Conjugacy of pseudo-Anosov braids

Description of the latter algorithm

Linear (not explicit) number of iterations of cyclic slidings (w.r.t. l).
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Conjugacy of pseudo-Anosov braids

Description of the latter algorithm

Linear (not explicit) number of iterations of cyclic slidings (w.r.t. l).

Call x ′ = s
T (xmx ). Do the same for y for obtaining y ′.
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Conjugacy of pseudo-Anosov braids

Description of the latter algorithm

Linear (not explicit) number of iterations of cyclic slidings (w.r.t. l).

Call x ′ = s
T (xmx ). Do the same for y for obtaining y ′.

Take s = lcm(mx ,my ) and x̄ = x ′ s
mx , ȳ = y

′ s
my .
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Conjugacy of pseudo-Anosov braids

Description of the latter algorithm

Linear (not explicit) number of iterations of cyclic slidings (w.r.t. l).
Call x ′ = s

T (xmx ). Do the same for y for obtaining y ′.

Take s = lcm(mx ,my ) and x̄ = x ′ s
mx , ȳ = y

′ s
my .

x̃ , ỹ are obtained as the product of arrows involved in cyclic
slidings.
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The conjugacy problem in B4

1 Introduction

2 Geometric properties

3 The usual conjugacy algorithm in Bn and in Garside groups

4 Conjugacy of pseudo-Anosov braids

5 The conjugacy problem in B4

6 Algorithmic Nielsen-Thurston classification
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The conjugacy problem in B4

Solution to CDP/CSP in B4
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Solution to CDP/CSP in B4

The problem of deciding the Nielsen-Thurston type of a given
4-strand braid has a quadratic solution (C.-Wiest).

Moreover:
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Solution to CDP/CSP in B4

The problem of deciding the Nielsen-Thurston type of a given
4-strand braid has a quadratic solution (C.-Wiest).

For 4-strands reducible braids, CDP and CSP are solvable by a
fast algorithm (C.-Wiest).

Moreover:

Theorem (C., Wiest)

Let x ∈ B4 be a pseudo-Anosov rigid braid. Then #SC(x) is bounded
above by O(l2).
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Solution to CDP/CSP in B4

The problem of deciding the Nielsen-Thurston type of a given
4-strand braid has a quadratic solution (C.-Wiest).

For 4-strands reducible braids, CDP and CSP are solvable by a
fast algorithm (C.-Wiest).

Moreover:

Theorem (C., Wiest)

Let x ∈ B4 be a pseudo-Anosov rigid braid. Then #SC(x) is bounded
above by O(l2).

Corollary

There is an algorithm of complexity O(l3) solving CDP/CSP in B4.
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The conjugacy problem in B4

Structure of SC’s of rigid elements

Remark: We use the Birman-Ko-Lee structure.
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We obtain the quotient graph SC∼(x):
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4 · length(x) elements of SC(x)

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 29 / 36



The conjugacy problem in B4

Structure of SC’s of rigid elements

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected
directed graph.

The vertices are the elements of SC, the edges some “minimal
conjugators”.

In the rigid case, results by Gebhardt about the ”transport” allow to
consider this graph modulo conjugation by δ and cycling.

We obtain the quotient graph SC∼(x):

each vertex corresponds to an equivalence class containing
4 · length(x) elements of SC(x)

the edges still correspond to “minimal conjugators”.

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 29 / 36



The conjugacy problem in B4

Structure of SC’s of rigid elements

Remark: We use the Birman-Ko-Lee structure.

The set of Sliding circuits is endowed with the structure of a connected
directed graph.

The vertices are the elements of SC, the edges some “minimal
conjugators”.

In the rigid case, results by Gebhardt about the ”transport” allow to
consider this graph modulo conjugation by δ and cycling.

We obtain the quotient graph SC∼(x):

each vertex corresponds to an equivalence class containing
4 · length(x) elements of SC(x)

the edges still correspond to “minimal conjugators”.

We need to bound linearly (w.r.t. the length) the number of vertices of
SC∼(x).
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The conjugacy problem in B4

The quotient graph

Thanks to the simplicity of the lattice of simple elements in the
Birman-Ko-Lee structure of B4, one can show that this quotient graph
SC∼(x) has one of the following forms.
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The conjugacy problem in B4

Bounding the line

As edges are given by minimal conjugators we can use again
Masur-Minsky’s bound: the length of the line is linearly bounded by the
length of the braid we started with.
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Algorithmic Nielsen-Thurston classification

Another (not explicit) polynomial-time algorithm
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Algorithmic Nielsen-Thurston classification

Another (not explicit) polynomial-time algorithm

Theorem (C.)

There exists an algorithm which decides the Nielsen-Thurston type of
a given braid on n strands and of length l in time O(l3) for each fixed n.
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Algorithmic Nielsen-Thurston classification

The algorithm

1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).
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2) Pseudo-Anosov have small (6 K (n)) power conjugated to a rigid
braid.

3) Given x ∈ Bn non-periodic, for any i = 1, . . . ,K (n), apply s

iteratively C · length(x i) times to x i .

M. Calvez (Rennes1-Sevilla) LBC Property and algorithms in Bn June 1st, 2012 34 / 36



Algorithmic Nielsen-Thurston classification

The algorithm

1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).

2) Pseudo-Anosov have small (6 K (n)) power conjugated to a rigid
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3) Given x ∈ Bn non-periodic, for any i = 1, . . . ,K (n), apply s
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Algorithmic Nielsen-Thurston classification

The algorithm

1) It is easy to decide periodicity (Birman, Gebhardt, G.-Meneses).

2) Pseudo-Anosov have small (6 K (n)) power conjugated to a rigid
braid.

3) Given x ∈ Bn non-periodic, for any i = 1, . . . ,K (n), apply s

iteratively C · length(x i) times to x i .

4) If no rigid element is found, then x is reducible.

5) Otherwise, for the rigid element x̃ obtained, one can test in an
effective way whether it is reducible or pseudo-Anosov
(G.-Meneses, Wiest).
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Algorithmic Nielsen-Thurston classification

Questions

Look at the geometry of the curve complex associated to the
n-times punctured disk and find the value of C.

Does LBC hold in Garside groups?
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Algorithmic Nielsen-Thurston classification

1

Thank you

1
This picture by courtesy of Marta Aguilera.
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